ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent experiments in the cuprates have seen evidence of a transient superconducting state upon optical excitation polarized along the c-axis [R. Mankowsky et al., Nature 516, 71 (2014)]. Motivated by these experiments we propose an extension of the single-layer $t-J-V$ model of cuprates to three dimensions in order to study the effects of inter-plane tunneling on the competition between superconductivity and bond density wave order. We find that an optical pump can suppress the charge order and simultaneously enhance superconductivity, due to the inherent competition between the two. We also provide an intuitive picture of the physical mechanism underlying this effect. Furthermore, based on a simple Floquet theory we estimate the magnitude of the enhancement.
We study the effects of strong electron-electron interactions on the surface of cubic topological Kondo insulators (such as samarium hexaboride, SmB$_6$). Cubic topological Kondo insulators generally support three copies of massless Dirac nodes on th e surface, but only two of them are energetically degenerate and exhibit an energy offset relative to the third one. With a tunable chemical potential, when the surface states host electron and hole pockets of comparable size, strong interactions may drive this system into rotational symmetry breaking nematic and translational symmetric breaking excitonic spin- or charge-density-wave phases, depending on the relative chirality of the Dirac cones. Taking a realistic surface band structure into account we analyze the associated Ginzburg-Landau theory and compute the mean field phase diagram for interacting surface states. Beyond mean field theory, this system can be described by a two-component isotropic Ashkin-Teller model at finite temperature, and we outline the phase diagram of this model. Our theory provides a possible explanation of recent measurements which detect a two-fold symmetric magnetoresistance and an upturn in surface resistivity with tunable gate voltage in SmB$_6$. Our discussion can also be germane to other cubic topological insulators, such as ytterbium hexaboride (YbB$_6$), plutonium hexaboride (PuB$_6$).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا