ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on microwave (mw) radiation induced electric currents in (Cd,Mn)Te/(Cd,Mg)Te and InAs/(In,Ga)As quantum wells subjected to an external in-plane magnetic field. The current generation is attributed to the spin-dependent energy relaxation of electrons heated by mw radiation. The relaxation produces equal and oppositely directed electron flows in the spin-up and spin-down subbands yielding a pure spin current. The Zeeman splitting of the subbands in the magnetic field leads to the conversion of the spin flow into a spin-polarized electric current.
We describe the observation of the circular and linear photogalvanic effects in HgTe/CdHgTe quantum wells. The interband absorption of mid-infrared radiation as well as the intrasubband absorption of terahertz (THz) radiation in the QWs structures is shown to cause a dc electric current due to these effects. The photocurrent magnitude and direction varies with the radiation polarization state and crystallographic orientation of the substrate in a simple way that can be understood from a phenomenological theory. The observed dependences of the photocurrent on the radiation wavelength and temperature are discussed.
Symmetry and spin dephasing of in (110)-grown GaAs quantum wells (QWs) are investigated applying magnetic field induced photogalvanic effect (MPGE) and time-resolved Kerr rotation. We show that MPGE provides a tool to probe the symmetry of (110)-grow n quantum wells. The photocurrent is only observed for asymmetric structures but vanishes for symmetric QWs. Applying Kerr rotation we prove that in the latter case the spin relaxation time is maximal, therefore these structures set upper limit of spin dephasing in GaAs QWs. We also demonstrate that structure inversion asymmetry can be controllably tuned to zero by variation of delta-doping layer position.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا