ترغب بنشر مسار تعليمي؟ اضغط هنا

68 - V.V. Bannikov 2014
The structural, elastic, magnetic properties, as well as electronic structure and chemical bonding picture of new oxide 3d1-perovskite BaVO3, recently synthesized, were systematically investigated involving the first-principles FLAPW-GGA calculations . The obtained results are discussed in comparison with available experimental data, as well as with those obtained before for isostructural and isoelectronic SrVO3 perovskite.
First-principles FLAPW-GGA band structure calculations were employed to examine the structural, electronic properties and the chemical bonding picture for four ZrCuSiAs-like Th-based quaternary pnictide oxides ThCuPO, ThCuAsO, ThAgPO, and ThAgAsO. Th ese compounds were found to be semimetals and may be viewed as intermediate systems between two main isostructural groups of superconducting and semiconducting 1111 phases. The Th 5f states participate actively in the formation of valence bands and the Th 5f states for ThMPnO phases are itinerant and partially occupied. We found also that the bonding picture in ThMPnO phases can be classified as a high-anisotropic mixture of ionic and covalent contributions: inside [Th2O2] and [M2Pn2] blocks, mixed covalent-ionic bonds take place, whereas between the adjacent [Th2O2]/[M2Pn2] blocks, ionic bonds emerge owing to [Th2O2] to [M2Pn2] charge transfer.
Using the ab initio FLAPW-GGA method we examine the electronic and magnetic properties of nitrogen-doped non-magnetic sesquioxide La2O3 emphasizing the role of doping sites in the occurrence of d0-magnetism. We predict the magnetization of La2O3 indu ced by nitrogen impurity in both octahedral and tetrahedral sites of the oxygen sublattice. The most interesting results are that (i) the total magnetic moments (about 1 {mu}B per supercells) are independent of the doping site, whereas (ii) the electronic spectra of these systems differ drastically: La2O3:N with six-fold coordinated nitrogen behaves as a narrow-band-gap magnetic semiconductor, whereas with four-fold coordinated nitrogen is predicted to be a magnetic half-metal. This effect is explained taking into account the differences in N-2pz versus N-2px,y orbital splitting for various doping sites. Thus, the type of the doping site is one of the essential factors for designing of new d0-magnetic materials with promising properties.
We assumed that significant enlargement of the functional properties of the family of quaternary ZrCuSiAs-like pnictide-oxides, often called also as 1111 phases, which are known now first of all as parent phases for new FeAs superconductors, may be a chieved by replacement of nonmagnetic ions by magnetic ions in semiconducting ZrCuSiAs-like phases. We checked this assumption by means of first-principles FLAPW-GGA calculations using a wide-band-gap semiconductor YZnAsO doped with Mn, Fe, and Co as an example. Our main finding is that substitution of Mn, Fe, and Co for Zn leads to drastic transformations of electronic and magnetic properties of the parent material: as distinct from the non-magnetic YZnAsO, the examined doped phases YZn0.89Mn0.11AsO, YZn0.89Fe0.11AsO, and YZn0.89Co0.11AsO behave as a magnetic semiconductor, a magnetic half-metal or as a magnetic gapless semi-metal, respectively.
First-principles calculations through a FLAPW-GGA method for six possible polymorphs of ruthenium mononitride RuN with various atomic coordination numbers CNs: cubic zinc blende (ZB) and cooperite PtS-like structures with CNs = 4; cubic rock-salt (RS ), hexagonal WC-like and NiAs-like structures with CNs = 6 and cubic CsCl-like structure with CN = 8 indicate that the most stable is ZB structure, which is much more preferable for RuN than the recently reported RS structure for synthesized RuN samples. The elastic and electronic properties of ZB-RuN were investigated and discussed in comparison with those for RS-RuN polymorph.
Full-potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA) for the exchange-correlation potential has been applied for the study of structural, elastic and electronic properties of the newly synt hesized nitrogen-containing perovskite-like superconductor ZnNNi3. The optimized lattice parameter, independent elastic constants (C11, C12 and C44), bulk modulus B, compressibility betta, and shear modulus G are evaluated. The band structure, total and site- projected l- decomposed DOSs, the shape of the Fermi surface, the Sommerfeld coefficient and the molar Pauli paramagnetic susceptibility for this novel anti-perovskite are obtained and analyzed in comparison with related anti-perovskites ZnCNi3 and MgCNi3
First-principle FLAPW-GGA band structure calculations are employed to obtain the structural, electronic properties and chemical bonding picture for two related layered phases, namely, quaternary oxyarsenides LaZnAsO and YZnAsO. These compounds are fo und to be direct-transition type semiconductors with the GGA gaps of about 0.65-1.30 eV. The peculiarities of chemical bonding in these phases are investigated and discussed in comparison with quaternary oxyarsenide LaFeAsO - a basic phase for the newly discovered 26-52K superconductors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا