ترغب بنشر مسار تعليمي؟ اضغط هنا

Impurities and defects are known to affect the properties of the charge density wave (CDW) state but the influence of impurities on the density of states inside the Peierls gap remains largely unexplored. Here we present an experimental study of the effect of indium impurities on photoconduction spectra of CDW compound orthorhombic TaS$_3$. We use the temperature diffusion method to introduce indium into a sample from preliminary attached In contacts. The concentration of In after 23 hours of diffusion is found to be nonuniform and strongly dependent on the distance to the contacts. The diffusion affects the spectral range 0.15-0.25 eV, increasing the photoconduction amplitude linearly with diffusion time. The optical gap value obtained from the measurements is $2Delta = 0.25$ eV and the tail of states below $2Delta$ is associated with the impurities in agreement with the T{u}tt{o}-Zawadowski theory. Diffusion-induced modification of current-voltage characteristics and decrease of the Peierls temperature are also observed. Neither changes in photoconduction spectra nor in the Peierls transition temperature of the control sample with Au contacts are found.
Photoconduction in the monoclinic phase of quasi-one-dimensional conductor TaS$_3$ has been observed at $T < 70$~K. It was studied jointly with low-temperature ohmic and non-linear dark conduction. The strong sample quality dependence of both photoco nduction and dark conduction at this temperature region has been observed. Together with a similarity of the main features of the photoconduction characteristic of both monoclinic ({it m-}TaS$_3$) and orthorhombic ({it o-}TaS$_3$) samples the following new peculiarities of photoconduction in {it m-}TaS$_3$ were found: 1) the dependence of the activation energy of photoconduction on temperature, $T$, 2) the change of the recombination mechanism from the linear type to the collisional one at low $T$ with a sample quality growth, 3) the existence of a fine structure of the electric-field dependence of photoconduction. Spectral study gives the Peierls energy gap value $2Delta ^*= 0.18$~eV.
The photoconductivity spectra of NbS_3 (phase I) crystals are studied. A drop of photoconductivity corresponding to the Peierls gap edge is observed. Reproducible spectral features are found at energies smaller the energy gap value. The first one is a peak at the energy 0.6 eV that is close to the midgap one. It has a threshold-like dependence of the amplitude on the electrical field applied. Another feature is a peak at the energy 0.9 eV near to the edge of the gap. We ascribe the origin of this peak to the stacking faults. The third one are continuous states between these peaks at energies 0.6-0.8 eV. We observed bleaching of the photoconductivity even below zero at this energies in the high electric field (700 V/cm) and under additional illumination applied.
Energy structure of the Peierls gap in orthorhombic TaS$_3$ is examined by spectral study of photoconduction. The gap edge and energy levels inside the Peierls gap are observed. The amplitude of the energy levels is found to depend on both the temper ature and the electric field. The electric field of the order of 10 V/cm affects the energy levels and leads to the redistribution of intensity between peaks. The small value of the electric field indicates participation of the collective state in formation of the energy levels inside the Peierls gap.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا