ترغب بنشر مسار تعليمي؟ اضغط هنا

Secondary eclipses are a powerful tool to measure directly the thermal emission from extrasolar planets, and to constrain their type and physical parameters. We started a project to obtain reliable broad-band measurements of the thermal emission of t ransiting exoplanets. Ground-based high-cadence near-infrared relative photometry was used to obtain sub-millimagnitude precision light curve of a secondary eclipse of WASP-4b -- a 1.12 M_J hot Jupiter on a 1.34 day orbit around G7V star. The data show a clear ~10-sigma detection of the planets thermal emission at 2.2 mu m. The calculated thermal emission corresponds to a fractional eclipse depth of 0.185^{+0.014}_{-0.013}%, with a related brightness temperature in Ks of T_B = 1995 pm 40 K, centered at T_C = 2455102.61162^{+0.00071}_{-0.00077} HJD. We could set a limit on the eccentricity of e cos omega=0.0027 pm 0.0018, compatible with a near-circular orbit. The calculated brightness temperature, as well as the specific models suggest a highly inefficient redistribution of heat from the day-side to the night-side of the planet, and a consequent emission mainly from the day-side. The high-cadence ground-based technique is capable of detecting the faint signal of the secondary eclipse of extrasolar planets, making it a valuable complement to space-based mid-IR observations.
244 - C. Caceres 2009
Currently the only technique sensitive to Earth mass planets around nearby stars (that are too close for microlensing) is the monitoring of the transit time variations of the transiting extrasolar planets. We search for additional planets in the syst ems of the hot Neptune GJ 436b, and the hot-Jupiter XO-1b, using high cadence observations in the J and Ks bands. New high-precision transit timing measurements are reported: GJ 436b Tc = 2454238.47898 pm 0.00046 HJD; XO-1b Tc(A) = 2454218.83331 pm 0.00114 HJD, Tc(B) = 2454222.77539 pm 0.00036 HJD, Tc(C) = 2454222.77597 pm 0.00039 HJD, Tc(D) = 2454226.71769 pm 0.00034 HJD, and they were used to derive new ephemeris. We also determined depths for these transits. No statistically significant timing deviations were detected. We demonstrate that the high cadence ground based near-infrared observations are successful in constraining the mean transit time to ~30 sec., and are a viable alternative to space missions.
51 - R. Kurtev 2008
The estimated total number of Milky Way globulars is 160+-20. The question of whether there are any more undiscovered globular clusters in the Milky Way is particularly relevant with advances in near and mid-IR instrumentation. This investigation is a part of a long-term project to search the inner Milky Way for hidden star clusters and to study them in detail. GLIMPSE-C02 (G02) is one of these objects, situated near the Galactic plane (l=14.129deg, b=-0.644deg). Our analysis is based on SOFI/NTT JHKs imaging and low resolution (R~1400) spectroscopy of three bright cluster red giants in the K atmospheric window. We derived the metal abundance by analysis of these spectra and from the slope of the RGB. The cluster is deeply embedded in dust and undergoes a mean reddening of Av~24.8+-3 mag. The distance to the object is D=4.6+-0.7kpc. The metal abundance of G02 is [Fe/H](H96)=-0.33+-0.14 and [Fe/H](CG)=-0.16+-0.12 using different scales. The best fit to the radial surface brightness profile with a single-mass Kings model yields a core radius rc=0.70 arcmin (0.9pc), tidal radius rt=15 arcmin (20pc), and central oncentration c=1.33. We demonstrate that G02 is new Milky Way globular cluster, among the most metal rich globular clusters in the Galaxy. The object is physically located at the inner edge of the thin disk and the transition region with the bulge, and also falls in the zone of the missing globulars toward the central region of the Milky Way.
42 - J. Borissova 2008
Recent near- and mid-infrared surveys have brought evidence that the Milky Way continues to form massive clusters. We carry out a program to determine the basic physical properties of the new massive cluster candidate [DBS2003]179. Medium-resolution K-band spectra and deep near-infrared images of [DBS2003]179 were used to derive the spectral types of eight member stars, and to estimate the distance and reddening to the cluster. Seven of ten stars with spectra show emission lines. Comparison with template spectra indicated that they are early O-type stars. The mean radial velocity of the cluster is Vrad=-77+-6 km/s. Knowing the spectral types of the members and the color excesses, we determined extinction Av~16.6 and distance modulus (m-M)0~14.5 mag (D~7.9 kpc). The presence of early O-stars and a lack of red supergiants suggests a cluster age of 2-5Myr. The total cluster mass is approximated to 0.7x10^4 Msun and it is not yet dynamically relaxed. The candidate [DBS2003]179 further increases the family of the massive young clusters in the Galaxy, although it appears less massive than the prototypical starburst clusters.
We present the results of H- and K-band VLT/SINFONI integral field spectroscopy of the ULIRG IRAS 19254-7245 (The Super-antennae), an interacting double galaxy system containing an embedded AGN. Deep K-band spectroscopy reveals PaAlpha arising in a w arped disc with position angle of 330 degree and an inclination i=40-55 degree. The kinemetric parameters derived for H2 are similar to PaAlpha. Two high-ionization emission lines, [SiVI] and [AlIX], are detected and we identify as [NiII] the line observed at 1.94 micron. Diluting non-stellar continuum, which was previously detected, has decayed, and the H-band continuum emission is consistent with pure stellar emission. Based on H2 emission line ratios it is likely that at the central 1-kpc region H2 is excited by UV fluorescence in dense clouds while shock excitation is dominant further out. This scenario is supported by very low PaAlpha to H2 line ratio detected outside the nuclear region and non-thermal ortho/para ratios (~2.0 - 2.5) close to the nucleus.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا