ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze the inclusive spectra of hadrons produced in $pp$ collisions at high energies in the mid-rapidity region within the soft QCD and perturbative QCD assuming the possible creation of the soft gluons at low intrinsic transverse momenta $k_t$. From the best description of the LHC data we found the parametrization of the unintegrated gluon distribution which at low $k_t$ is different from the one obtained within the perturbative QCD.
Hadron inclusive spectra in pp collisions are analyzed within the modified quark-gluon string model including both the longitudinal and transverse motion of quarks in the proton in the wide region of initial energies. The self-consistent analysis sho ws that the experimental data on the inclusive spectra of light hadrons like pions and kaons at ISR energies can be satisfactorily described at transverse momenta not larger than 1-2 GeV/c. We discuss some difficulties to apply this model at energies above the ISR and suggest to include the distribution of gluons in the proton unintegrated over the internal transverse momentum. It leads to an increase in the inclusive spectra of hadrons and allows us to extend the satisfactory description of the data in the central rapidity region at energies higher than ISR.
The hadron inclusive spectra in pp collisions at high energies are analyzed within a soft QCD model, namely the quark-gluon string model. In addition to the sea quark distribution in the incoming proton we consider also the unintegrated gluon distrib ution that has an increasing behaviour when the gluon transverse momentum grows. It leads to an increase of the inclusive spectra of hadrons and their multiplicity in the central rapidity region of pp collision at LHC energies.
The production of charmed and beauty baryons in proton-proton collisions at high energies is analyzed within the modified quark-gluon string model. We present some predictions for the experiments on the forward beauty baryon production in pp collisio ns at LHC energies. This analysis allows us to find useful information on the Regge trajectories of the heavy (b barb) mesons and the sea beauty quark distributions in the proton.
168 - V.A.Bednyakov 2008
Weakly Interacting Massive Particles (WIMPs) are among the main candidates for the relic dark matter (DM). The idea of the direct DM detection relies on elastic spin-dependent (SD) and spin-independent (SI) interaction of WIMPs with target nuclei. In this review paper the relevant formulae for WIMP event rate calculations are collected. For estimations of the WIMP-proton and WIMP-neutron SD and SI cross sections the effective low-energy minimal supersymmetric standard model is used. The traditional one-coupling-dominance approach for evaluation of the exclusion curves is described. Further, the mixed spin-scalar coupling approach is discussed. It is demonstrated, taking the high-spin Ge-73 dark matter experiment HDMS as an example, how one can drastically improve the sensitivity of the exclusion curves within the mixed spin-scalar coupling approach, as well as due to a new procedure of background subtraction from the measured spectrum. A general discussion on the information obtained from exclusion curves is given. The necessity of clear WIMP direct detection signatures for a solution of the dark matter problem, is pointed out.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا