ترغب بنشر مسار تعليمي؟ اضغط هنا

Forward production of beauty baryons in pp collisions at LHC

159   0   0.0 ( 0 )
 نشر من قبل Gennady Lykasov I
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The production of charmed and beauty baryons in proton-proton collisions at high energies is analyzed within the modified quark-gluon string model. We present some predictions for the experiments on the forward beauty baryon production in pp collisions at LHC energies. This analysis allows us to find useful information on the Regge trajectories of the heavy (b barb) mesons and the sea beauty quark distributions in the proton.



قيم البحث

اقرأ أيضاً

The production of charmed and beauty hadrons in proton-proton collisions at high energies are analyzed within the modified quark-gluon string model (QGSM) including the internal motion of quarks in colliding hadrons. We present some predictions for t he future experiments on the beauty baryon production in $pp$ collisions at LHC energies. This analysis allows us to find interesting information on the Regge trajectories of the heavy (b{bar b}) mesons and the sea beauty quark distributions in the proton.
Prospects for strangeness production in pp collisions at the Large Hadron Collider (LHC) are discussed within the statistical model. Firstly, the system size and the energy dependence of the model parameters are extracted from existing data and extra polated to LHC energy. Particular attention is paid to demonstrate that the chemical decoupling temperature is independent of the system size. In the energy regime investigated so far, strangeness production in pp interactions is strongly influenced by the canonical suppression effects. At LHC energies, this influence might be reduced. Particle ratios with particular sensitivity to canonical effects are indicated. Secondly, the relation between the strangeness production and the charged-particle multiplicity in pp interactions is investigated. In this context the multiplicity dependence studied at Tevatron is of particular interest. There, the trend in relative strangeness production known from centrality dependent heavy-ion collisions is not seen in multiplicity selected pp interactions. However, the conclusion from the Tevatron measurements is based on rather limited data samples with low statistics and number of observables. We argue, that there is an absolute need at LHC to measure strangeness production in events with different multiplicities to possibly disentangle relations and differences between particle production in pp and heavy-ion collisions.
In this letter we estimate the contribution of the double diffractive processes for the diphoton production in $pp$ collisions at the Large Hadron Collider (LHC). The acceptance of the central and forward LHC detectors is taken into account and predi ctions for the invariant mass, rapidity and, transverse momentum distributions are presented. A comparison with the predictions for the Light -- by -- Light (LbL) scattering and exclusive diphoton production is performed. We demonstrate that the events associated to double diffractive processes can be separated and its study can be used to constrain the behavior of the diffractive parton distribution functions.
We have performed a systematic study of $J/psi$ and $psi(2S)$ production in $p-p$ collisions at different LHC energies and at different rapidities using the leading order (LO) non-relativistic QCD (NRQCD) model of heavy quarkonium production. We have included the contributions from $chi_{cJ}$ ($J$ = 0, 1, 2) and $psi(2S)$ decays to $J/psi$. The calculated values have been compared with the available data from the four experiments at LHC namely, ALICE, ATLAS, CMS and LHCb. In case of ALICE, inclusive $J/psi$ and $psi(2S)$ cross-sections have been calculated by including the feed-down from $B$ meson using Fixed-Order Next-to-Leading Logarithm (FONLL) formalism. It is found that all the experimental cross-sections are well reproduced for $p_T >$ 4 GeV within the theoretical uncertainties arising due to the choice of the factorization scale. We also predict the transverse momentum distributions of $J/psi$ and $psi(2S)$ both for the direct and feed-down processes at the upcoming LHC energies of $sqrt{s} =$ 5.1 TeV and 13 TeV for the year 2015.
We calculate various azimuthal angle distributions for three jets produced in the forward rapidity region with transverse momenta $p_T>20,mathrm{GeV}$ in proton-proton (p-p) and proton-lead (p-Pb) collisions at center of mass energy $5.02,,mathrm{TeV }$. We use the multi-parton extension of the so-called small-$x$ Improved Transverse Momentum Dependent factorization (ITMD). We study effects related to change from the standard $k_T$-factorization to ITMD factorization as well as changes as one goes from p-p collision to p-Pb. We observe rather large differences in the distribution when we change the factorization approach, which allows to both improve the small-$x$ TMD gluon distributions as well as validate and improve the factorization approach. We also see significant depletion of the nuclear modification ratio, indicating a possibility of searches for saturation effects using trijet final states in a more exclusive way than for dijets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا