ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the prospects for Central Exclusive Diffractive (CED) production of BSM Higgs bosons at the LHC using forward proton detectors installed at 220 m and 420 m distance around ATLAS and / or CMS. We update a previous analysis for the MSSM taking into account improvements in the theoretical calculations and the most recent exclusion bounds from the Tevatron. We extend the MSSM analysis to new benchmark scenarios that are in agreement with the cold dark matter relic abundance and other precision measurements. We analyse the exclusive production of Higgs bosons in a model with a fourth generation of fermions. Finally, we comment on the determination of Higgs spin-parity and coupling structures at the LHC and show that the forward proton mode could provide crucial information on the CP properties of the Higgs bosons.
We calculate the probability that the rapidity gaps in diffractive processes survive both eikonal and enhanced rescattering. We present arguments that enhanced rescattering, which violates soft-hard factorization, is not very strong. Accounting for N LO effects, there is no reason to expect that the black disc regime is reached at the LHC. We discuss the predictions for the survival of the rapidity gaps for exclusive Higgs production at the LHC.
We emphasize the sizeable effects of absorption on high-energy `soft processes, and, hence, the necessity to include multi-Pomeron-Pomeron interactions in the usual multi-channel eikonal description. We present a model which includes a complete set o f the multi-Pomeron vertices and which accounts for the diffusion in both, the impact parameter and ln(k_t), of the parton during its evolution in rapidity. We tune the model to the available data for soft processes in the CERN-ISR to Tevatron energy range. We make predictions for `soft observables at the LHC.
The prospects for central exclusive diffractive (CED) production of MSSM Higgs bosons at the LHC are reviewed. These processes can provide important information on the $cp$-even Higgs bosons, allowing to probe interesting regions of the $MA$--$tb$ pa rameter plane. The sensitivity of the searches in the forward proton mode for the Higgs bosons in the so-called CDM-benchmark scenarios and the effects of fourth-generation models on the CED Higgs production are briefly discussed.
We describe the formalism, and present the results, for a triple-Regge analysis of the available pp and pbar{p} high-energy data which explicitly accounts for absorptive corrections. In particular, we allow for the gap survival probability, S^2, in s ingle proton diffractive dissociation. Since for pp scattering the value of S^2 is rather small, the triple-Pomeron vertex obtained in this analysis is larger than that obtained in the old analyses where the suppression caused by the absorptive corrections was implicitly included in an effective vertex. We show that the bare triple-Pomeron coupling that we extract from the pp and pbar{p} data is consistent with that obtained in a description of the gamma p -> J/psi + Y HERA data. The analyses of the data prefer a zero slope, corresponding to the small size of the bare vertex, giving the hope of a smooth matching to the perturbative QCD treatment of the triple-Pomeron coupling.
We discuss how the early LHC data runs can provide crucial tests of the formalism used to predict the cross sections of central exclusive production.
We discuss recent calculations of the survival probability of the large rapidity gaps in exclusive processes of the type pp --> p+A+p at high energies. Absorptive or screening effects are important, and one consequence is that the total cross section at the LHC is predicted to be only about 90 mb.
The prospects for central exclusive diffractive (CED) production of MSSM Higgs bosons at the LHC are reviewed. It is shown that the CED channels, making use of forward proton detectors at the LHC installed at 220 m and 420 m distance around ATLAS and / or CMS, can provide important information on the Higgs sector of the MSSM. In particular, CED production of the neutral CP-even Higgs bosons h and H and their decays into bottom quarks has the potential to probe interesting regions of the M_A--tan_beta parameter plane of the MSSM and may give access to the bottom Yukawa couplings of the Higgs bosons up to masses of M_H approx 250 GeV.
We show that the use of forward proton detectors at the LHC installed at 220 m and 420 m distance around ATLAS and / or CMS can provide important information on the Higgs sector of the MSSM. We analyse central exclusive production of the neutral CP-e ven Higgs bosons h and H and their decays into bottom quarks, tau leptons and W bosons in different MSSM benchmark scenarios. Using plausible estimates for the achievable experimental efficiencies and the relevant background processes, we find that the prospective sensitivity of the diffractive Higgs production will allow to probe interesting regions of the M_A--tan_beta parameter plane of the MSSM. Central exclusive production of the CP-even Higgs bosons of the MSSM may provide a unique opportunity to access the bottom Yukawa couplings of the Higgs bosons up to masses of M_H lsim 250 GeV. We also discuss the prospects for identifying the CP-odd Higgs boson, A, in diffractive processes at the LHC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا