ترغب بنشر مسار تعليمي؟ اضغط هنا

Central Exclusive Diffractive MSSM Higgs-Boson Production at the LHC

112   0   0.0 ( 0 )
 نشر من قبل Georg Weiglein
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The prospects for central exclusive diffractive (CED) production of MSSM Higgs bosons at the LHC are reviewed. It is shown that the CED channels, making use of forward proton detectors at the LHC installed at 220 m and 420 m distance around ATLAS and / or CMS, can provide important information on the Higgs sector of the MSSM. In particular, CED production of the neutral CP-even Higgs bosons h and H and their decays into bottom quarks has the potential to probe interesting regions of the M_A--tan_beta parameter plane of the MSSM and may give access to the bottom Yukawa couplings of the Higgs bosons up to masses of M_H approx 250 GeV.

قيم البحث

اقرأ أيضاً

75 - Marek Tasevsky 2013
We investigate the prospects for Central Exclusive Production (CEP) of MSSM Higgs bosons at the LHC using forward proton detectors proposed to be installed at 220 m and 420 m distance around ATLAS and / or CMS. We summarize the situation after the fi rst and very successful data taking period of the LHC. The discovery of a Higgs boson and results from searches for additional MSSM Higgs bosons from both the ATLAS and CMS experiments, based on data samples each corresponding to about 25 fb-1, have recently led to a proposal of new low-energy MSSM benchmark scenarios. The CEP signal cross section for the process H/h -> bb and its backgrounds are estimated in these new scenarios. We also make some comments about the experimental procedure if the proposed forward proton detectors are to be used to measure the CEP signal.
The prospects for central exclusive diffractive (CED) production of MSSM Higgs bosons at the LHC are reviewed. These processes can provide important information on the $cp$-even Higgs bosons, allowing to probe interesting regions of the $MA$--$tb$ pa rameter plane. The sensitivity of the searches in the forward proton mode for the Higgs bosons in the so-called CDM-benchmark scenarios and the effects of fourth-generation models on the CED Higgs production are briefly discussed.
We investigate the associated production of charged Higgs bosons (H^pm) and W bosons at the CERN Large Hadron Collider, using the leptonic decay H^+ -> tau^+ nu_tau and hadronic W decay, within different scenarios of the Minimal Supersymmetric Standa rd Model (MSSM) with both real and complex parameters. Performing a parton level study we show how the irreducible Standard Model background from W + 2 jets can be controlled by applying appropriate cuts. In the standard m_h^max scenario we find a viable signal for large tan beta and intermediate H^pm masses (~ m_t). In MSSM scenarios with large mass-splittings among the heavy Higgs bosons the cross-section can be resonantly enhanced by factors up to one hundred, with a strong dependence on the CP-violating phases.
We discuss the prospects of searching for the neutral Higgs bosons of the triplet model in central exclusive production at the LHC. A detailed Monte Carlo analysis is presented for six benchmark scenarios for the Higgs boson, $H_1^{0}$, these cover $ m_{H_1^0}=$~120, 150 GeV and doublet-triplet mixing of $c_H=$~0.2, 0.5 or 0.8. We find that, for appropriate values of $c_H$, an excellent Higgs mass measurement is possible for the neutral Higgs in the triplet model, and discuss how to distinguish the triplet model Higgs boson from the Higgs boson of the Standard Model.
We present an analysis of the production and two-photon decay of the lightest CP-even Higgs boson of the Minimal Supersymmetric Standard Model (MSSM) at the Large Hadron Collider (LHC). A rather general model is considered, without supergravity const raints. All parameters of the model are taken into account, we especially study the dependence of the cross section on the squark masses, on the bilinear parameter $mu$ and the trilinear supersymmetry breaking parameter $A$. Non-zero values of these parameters lead to significant mixing in the squark sector, and, thus, affect the masses of Higgs bosons through radiative corrections, as well as their couplings to squarks. The cross section times the two-photon branching ratio of $h^0$ is of the order of 15--25~fb in much of the parameter space that remains after imposing the present experimental constraints on the parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا