ترغب بنشر مسار تعليمي؟ اضغط هنا

333 - V. U. Nazarov , G. Vignale , 2008
The dynamical exchange-correlation kernel $f_{xc}$ of a non-uniform electron gas is an essential input for the time-dependent density functional theory of electronic systems. The long-wavelength behavior of this kernel is known to be of the form $f_{ xc}= alpha/q^2$ where $q$ is the wave vector and $alpha$ is a frequency-dependent coefficient. We show that in the limit of weak non-uniformity the coefficient $alpha$ has a simple and exact expression in terms of the ground-state density and the frequency-dependent kernel of a {it uniform} electron gas at the average density. We present an approximate evaluation of this expression for Si and discuss its implications for the theory of excitonic effects.
Due to the strongly nonlocal nature of $f_{xc}({bf r},{bf r},omega)$ the {em scalar} exchange and correlation (xc) kernel of the time-dependent density-functional theory (TDDFT), the formula for Q the friction coefficient of an interacting electron g as (EG) for ions tends to give a too large value of Q for heavy ions in the medium- and low-density EG, if we adopt the local-density approximation (LDA) to $f_{xc}({bf r},{bf r},omega)$, even though the formula itself is formally exact. We have rectified this unfavorable feature by reformulating the formula for Q in terms of the {em tensorial} xc kernel of the time dependent current-density functional theory, to which the LDA can be applied without intrinsic difficulty. Our numerical results find themselves in a considerably better agreement with the experimental stopping power of Al and Au for slow ions than those previously obtained within the LDA to the TDDFT.
355 - V. U. Nazarov , Y.-C. Chang 2007
We resolve the existing controversy concerning the selection of the sign of the normal-to-the-interface component of the wave-vector $k_z$ of an electromagnetic wave in an active (gain) medium. Our method exploits the fact that no ambiguity exists in the case of a {em film} of the active medium since its coefficient of reflectance is invariant under the inversion of the sign of $k_z$. Then we show that the limit of the infinite film thickness determines a unique and physically consistent choice of the wave-vector and the refractive index. Practically important implications of the theory are identified and discussed.
We develop a scheme for building the scalar exchange-correlation (xc) kernel of time-dependent density functional theory (TDDFT) from the tensorial kernel of time-dependent {em current} density functional theory (TDCDFT) and the Kohn-Sham current den sity response function. Resorting to the local approximation to the kernel of TDCDFT results in a nonlocal approximation to the kernel of TDDFT, which is free of the contradictions that plague the standard local density approximation (LDA) to TDDFT. As an application of this general scheme, we calculate the dynamical xc contribution to the stopping power of electron liquids for slow ions to find that our results are in considerably better agreement with experiment than those obtained using TDDFT in the conventional LDA.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا