ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolving the wave-vector and the refractive index from the coefficient of reflectance

360   0   0.0 ( 0 )
 نشر من قبل Vladimir Nazarov
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We resolve the existing controversy concerning the selection of the sign of the normal-to-the-interface component of the wave-vector $k_z$ of an electromagnetic wave in an active (gain) medium. Our method exploits the fact that no ambiguity exists in the case of a {em film} of the active medium since its coefficient of reflectance is invariant under the inversion of the sign of $k_z$. Then we show that the limit of the infinite film thickness determines a unique and physically consistent choice of the wave-vector and the refractive index. Practically important implications of the theory are identified and discussed.

قيم البحث

اقرأ أيضاً

Sub-wavelength diffractive optics, commonly known as metasurfaces, have recently garnered significant attention for their ability to create ultra-thin flat lenses with extremely short focal lengths. Several materials with different refractive indices have been used to create metasurface lenses (metalenses). In this paper, we analyze the role of material refractive indices on the performance of these metalenses. We employ both forward and inverse design methodologies to perform our analysis. We found that, while high refractive index materials allow for extreme reduction of the focal length, for moderate focal lengths and numerical aperture (<0.6), there is no appreciable difference in focal spot-size and focusing efficiency for metalenses made of different materials with refractive indices ranging between n= 1.25 to n=3.5.
Motivated by the ongoing controversy on the origin of the nonlinear index saturation and subsequent intensity clamping in femtosecond filaments, we study the atomic nonlinear polarization induced by a high-intensity and ultrashort laser pulse in hydr ogen by numerically solving the time dependent Schrodinger equation. Special emphasis is given to the efficient modeling of the nonlinear polarization at central laser frequency corresponding to 800 nm wavelength. Here, the recently proposed model of the Higher-Order Kerr Effect (HOKE) and t
Increasing the refractive index available for optical and nanophotonic systems opens new vistas for design: for applications ranging from broadband metalenses to ultrathin photovoltaics to high-quality-factor resonators, higher index directly leads t o better devices with greater functionality. Although standard transparent materials have been limited to refractive indices smaller than 3 in the visible, recent metamaterials designs have achieved refractive indices above 5, accompanied by high losses, and near the phase transition of a ferroelectric perovskite a broadband index above 26 has been claimed. In this work, we derive fundamental limits to the refractive index of any material, given only the underlying electron density and either the maximum allowable dispersion or the minimum bandwidth of interest. The Kramers--Kronig relations provide a representation for any passive (and thereby causal) material, and a well-known sum rule constrains the possible distribution of oscillator strengths. In the realm of small to modest dispersion, our bounds are closely approached and not surpassed by a wide range of natural materials, showing that nature has already nearly reached a Pareto frontier for refractive index and dispersion. Surprisingly, our bound shows a cube-root dependence on electron density, meaning that a refractive index of 26 over all visible frequencies is likely impossible. Conversely, for narrow-bandwidth applications, nature does not provide the highly dispersive, high-index materials that our bounds suggest should be possible. We use the theory of composites to identify metal-based metamaterials that can exhibit small losses and sizeable increases in refractive index over the current best materials.
By means of the ultrafast optical Kerr effect method coupled to optical heterodyne detection (OHD-OKE), we characterize the third order nonlinear response of graphene at telecom wavelength, and compare it to experimental values obtained by the Z-scan method on the same samples. From these measurements, we estimate a negative nonlinear refractive index for monolayer graphene, $n_2 = - 1.1times 10^{-13} m^2/W$. This is in contradiction to previously reported values, which leads us to compare our experimental measurements obtained by the OHD-OKE and the Z-scan method with theoretical and experimental values found in the literature, and to discuss the discrepancies, taking into account parameters such as doping.
Which systems are ideal to obtain negative refraction with no absorption? Electromagnetically induced transparency (EIT) is a method to suppress absorption and make a material transparent to a field of a given frequency. Such a system has been discus sed in [1]; however the main limitations for negative refraction introduced are the necessity of resonant electric and magnetic dipole transitions, and the necessity of very dense media. We suggest using frequency translators in a composite system that would provide negative refraction for a range of optical frequencies while attempting to overcome the limitations discussed above. In the process of using frequency translators, we also find composite systems that can be used for refractive index enhancement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا