ترغب بنشر مسار تعليمي؟ اضغط هنا

78 - V. Sguera , L. Sidoli , A.J. Bird 2015
We report on a broad-band X-ray study (0.5-250 keV) of the Supergiant Fast X-ray Transient IGR J18483-0311 using archival INTEGRAL data and a new targeted XMM-Newton observation. Our INTEGRAL investigation discovered for the first time an unusually l ong X-ray activity (3-60 keV) which continuously lasted for at least 11 days, i.e. a significant fraction (about 60%) of the entire orbital period, and spanned orbital phases corresponding to both periastron and apastron passages. This prolongated X-ray activity is at odds with the much shorter durations marking outbursts from classical SFXTs especially above 20 keV, as such it represents a departure from their nominal behavior and it adds a further extreme characteristic to the already extreme SFXT IGR J18483-0311. Our IBIS/ISGRI high energy investigation (100-250 keV) of archival outbursts activity from the source showed that the recently reported hint of a possible hard X-ray tail is not real and it is likely due to noisy background. The new XMM-Newton targeted observation did not detect any sign of strong X-ray outburst activity from the source despite being performed close to its periastron passage, on the contrary IGR J18483-0311 was caught during the common intermediate X-ray state with a low luminosity value of 3x10^33 erg s^-1 (0.5-10 keV). We discuss all the reported results in the framework of both spherically symmetric clumpy wind scenario and quasi-spherical settling accretion model.
79 - L.Sidoli 2011
We report on a 40 ks long, uninterrupted X-ray observation of the candidate supergiant fast X-ray transient (SFXT) IGRJ16418-4532 performed with XMM-Newton on February 23, 2011. This high mass X-ray binary lies in the direction of the Norma arm, at a n estimated distance of 13 kpc. During the observation, the source showed strong variability exceeding two orders of magnitudes, never observed before from this source. Its X-ray flux varied in the range from 0.1 counts/s to about 15 counts/s, with several bright flares of different durations (from a few hundreds to a few thousands seconds) and sometimes with a quasi-periodic behavior. This finding supports the previous suggestion that IGRJ16418-4532 is a member of the SFXTs class. In our new observation we measured a pulse period of 1212+/-6 s, thus confirming that this binary contains a slowly rotating neutron star. During the periods of low luminosity the source spectrum is softer and more absorbed than during the flares. A soft excess is present below 2 keV in the cumulative flares spectrum, possibly due to ionized wind material at a distance similar to the neutron star accretion radius. The kind of X-ray variability displayed by IGRJ16418-4532, its dynamic range and time scale,together with the sporadic presence of quasi-periodic flaring, all are suggestive of a transitional accretion regime between pure wind accretion and full Roche lobe overflow. We discuss here for the first time this hypothesis to explain the behavior of IGRJ16418-4532 and, possibly, of other SFXTs with short orbital periods.
Timing analysis of the INTEGRAL-IBIS and Swift-BAT light curves of the Supergiant Fast X-ray Transient (SFXT) IGR J16465-4507 has identified a period of 30.32+/-0.02 days which we interpret as the orbital period of the binary system. In addition 11 o utbursts (9 of which are previously unpublished) have been found between MJD 52652 to MJD 54764, all of which occur close to the region of the orbit we regard as periastron. From the reported flux outbursts, we found a dynamical range in the interval ~30-80. Although in this regard IGR J16465-4507 cannot be considered a classical SFXT for which typical dinamical ranges are >100, still our reported values are significantly greater than that of classical persistent variable supergiant HMXBs (<20), supporting the idea that IGRJ16465-4507 is an intermediate SFXT system, much like few other similar cases reported in the literature.
102 - N. Masetti , R. Landi , V. Sguera 2010
Using data collected with the BeppoSAX, INTEGRAL and Swift satellites, we report and discuss the results of a study on the X-ray emission properties of the X-ray source 1ES 1210-646, recently classified as a high-mass X-ray binary through optical spe ctroscopy. This is the first in-depth analysis of the X-ray spectral characteristics of this source. We found that the flux of 1ES 1210-646 varies by a factor of about 3 on a timescale of hundreds of seconds and by a factor of at least 10 among observations acquired over a time span of several months. The X-ray spectrum of 1ES 1210-646 is described using a simple powerlaw shape or, in the case of INTEGRAL data, with a blackbody plus powerlaw model. Spectral variability is found in connection with different flux levels of the source. A strong and transient iron emission line with an energy of about 6.7 keV and an equivalent width of about 1.6 keV is detected when the source is found at an intermediate flux level. The line strength seems to be tied to the orbital motion of the accreting object, as this feature is only apparent at the periastron. Although the X-ray spectral description we find for the 1ES 1210-646 emission is quite atypical for a high-mass X-ray binary, the multiwavelegth information available for this object leads us to confirm this classification. The results presented here allow us instead to definitely rule out the possibility that 1ES 1210-646 is a (magnetic) cataclysmic variable as proposed previously and, in a broader sense, a white dwarf nature for the accretor is disfavoured. X-ray spectroscopic data actually suggest a neutron star with a low magnetic field as the accreting object in this system.
61 - V. Sguera , L. Bassani , R. Landi 2008
Context: IGR J16479-4514 is a fast X-ray transient known to display flares lasting typically a few hours. Recently, its counterpart has been identified with a supergiant star, therefore the source can be classified as member of the newly discovered c lass of Supergiant Fast X-ray Transients (SFXTs), specifically it is the one with the highest duty cycle. Aims: to characterize the quiescent X-ray behaviour of the source and to compare its broad band spectrum to that during fast X-ray flares. Methods: we performed an analysis of IBIS and JEM-X data with OSA 5.1 as well as an analysis of archival Swift/XRT data. Results: we present results from a long term monitoring of IGR J16479-4514 with detailed spectral and timing informations on 19 bright fast X-ray flares, 10 of which newly discovered. We also report for the first time results on the quiescent X-ray emission; the typical luminosity value (about 10^34 erg s^-1) is about 2 orders of magnitude greater than that typical of SFXTs while its broad band X-ray spectrum has a shape very similar to that during fast X-ray transient activity, i.e. a rather steep power law with Gamma=2.6. Conclusions: IGR J16479$-$4514 is characterized by a quiescent X-ray luminosity higher than that typical of other known SFXTs but lower than persistent emission from classical SGXBs. We suggest that such source is a kind of transition object between these two systems, supporting the idea that there is a continuum of behaviours between the class of SFXTs and that of classical persistent SGXBs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا