ترغب بنشر مسار تعليمي؟ اضغط هنا

The scanning mid-IR-laser microscopy was previously demonstrated as an effective tool for characterization of different semiconductor crystals. Now the technique has been successfully applied for the investigation of CZ Si$_x$Ge$_{1-x}$---a promising material for photovoltaics---and multicrystalline silicon for solar cells.
Some possible applications of the low-angle mid-IR-light scattering technique and some recently developed on its basis methods for non-destructive inspection and investigation of semiconductor materials and structures are discussed in the paper. The conclusion is made that the techniques in question might be very useful for solving a large number of problems regarding defect investigations and quality monitoring both in research laboratories and the industry of microelectronics
Czochralski-grown silicon crystals were studied by the techniques of the low-angle mid-IR-light scattering and electron-beam-induced current. The large-scale accumulations of electrically-active impurities detected in this material were found to be d ifferent in their nature and formation mechanisms from the well-known impurity clouds in a FZ-grown silicon. A classification of the large-scale impurity accumulations in CZ Si is made and point centers constituting them are analyzed in this paper. A model of the large-scale impurity accumulations in CZ-grown Si is also proposed. In addition, the images of the large-scale impurity accumulations obtained by means of the scanning mid-IR-laser microscopy are demonstrated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا