ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic ray propagation is diffusive because of pitch angle scattering by waves. We demonstrate that if the high-amplitude magnetohydrodynamic turbulence with $tilde B/langle Brangle sim 1$ is present on top of the mean field gradient, the diffusion b ecomes asymmetric. As an example, we consider the vertical transport of cosmic rays in our Galaxy propagating away from a point-like source. We solve this diffusion problem analytically using a one-dimensional Markov chain analysis. We obtained that the cosmic ray density markedly differs from the standard diffusion prediction and has a sizable effect on their distribution throughout the galaxy. The equation for the continuous limit is also derived, which shows limitations of the convection-diffusion equation.
In this paper, we investigated the magnetocaloric effect (MCE) in one-dimensional magnets with different types of ordering in the Ising model, Heisenberg, XY-model, the standard, planar, and modified Potts models. Exact analytical solutions to MCE as functions of exchange parameters, temperature, values and directions of an external magnetic field are obtained. The temperature and magnetic field dependences of MCE in the presence of frustrations in the system in a magnetic field are numerically computed in detail.
108 - M. V. Medvedev 2012
Merging binaries of compact relativistic objects (neutron stars and black holes) are thought to be progenitors of short gamma-ray bursts and sources of gravitational waves, hence their study is of great importance for astrophysics. Because of the str ong magnetic field of one or both binary members and high orbital frequencies, these binaries are strong sources of energy in the form of Poynting flux (e.g., magnetic-field-dominated outflows, relativistic leptonic winds, electromagnetic and plasma waves). The steady injection of energy by the binary forms a bubble (or a cavity) filled with matter with the relativistic equation of state, which pushes on the surrounding plasma and can drive a shock wave in it. Unlike the Sedov-von Neumann-Taylor blast wave solution for a point-like explosion, the shock wave here is continuously driven by the ever-increasing pressure inside the bubble. We calculate from the first principles the dynamics and evolution of the bubble and the shock surrounding it and predict that such systems can be observed as radio sources a few hours before and after the merger. At much later times, the shock is expected to settle onto the Sedov-von Neumann-Taylor solution, thus resembling an explosion.
43 - M. V. Medvedev 2012
Bubbles in the interstellar medium are produced by astrophysical sources, which continuously or explosively deposit large amount of energy into the ambient medium. These expanding bubbles can drive shocks in front of them, which dynamics is markedly different from the widely used Sedov-von Neumann-Taylor blast wave solution. Here we present the theory of a bubble-driven shock and show how its properties and evolution are determined by the temporal history of the source energy output, generally referred to as the source luminosity law, $L(t)$. In particular, we find the analytical solutions for a driven shock in two cases: the self-similar scaling $Lpropto (t/t_s)^p$ law (with $p$ and $t_s$ being constants) and the finite activity time case, $Lpropto (1-t/t_s)^{-p}$. The latter with $p>0$ describes a finite-time-singular behavior, which is relevant to a wide variety of systems with explosive-type energy release. For both luminosity laws, we derived the conditions needed for the driven shock to exist and predict the shock observational signatures. Our results can be relevant to stellar systems with strong winds, merging neutron star/magnetar/black hole systems, and massive stars evolving to supernovae explosions.
We present results of LDA calculations (band structure, densities of states, Fermi surfaces) for possible iron based superconductor BaFe2Se3 (Ba123) in normal (paramagnetic) phase. Results are briefly compared with similar data on prototype BaFe2As2 and (K,Cs)Fe2Se2 superconductors. Without doping this system is antiferromagnetic with T_N^{exp}~250K and rather complicated magnetic structure. Neutron diffraction experiments indicated the possibility of two possible spin structures (antiferromagnetically ordered plaquettes or zigzags), indistinguishable by neutron scattering. Using LSDA calculated exchange parameters we estimate Neel temperatures for both spin structures within the molecular field approximation and show tau_1 (plaquettes) spin configuration to be more favorable than tau_2 (zigzags).
Radiative diagnostics of high-energy density plasmas is addressed in this paper. We propose that the radiation produced by energetic particles in small-scale magnetic field turbulence, which can occur in laser-plasma experiments, collisionless shocks , and during magnetic reconnection, can be used to deduce some properties of the turbulent magnetic field. Particles propagating through such turbulence encounter locally strong magnetic fields, but over lengths much shorter than a particle gyroradius. Consequently, the particle is accelerated but not deviated substantially from a straight line path. We develop the general jitter radiation solutions for this case and show that the resulting radiation is directly dependent upon the spectral distribution of the magnetic field through which the particle propagates. We demonstrate the power of this approach in considering the radiation produced by particles moving through a region in which a (Weibel-like) filamentation instability grows magnetic fields randomly oriented in a plane transverse to counterstreaming particle populations. We calculate the spectrum as would be seen from the original particle population and as could be seen by using a quasi-monoenergetic electron beam to probe the turbulent region at various angles to the filamentation axis.
Radiation from many astrophysical sources, e.g. gamma-ray bursts and active galactic nuclei, is believed to arise from relativistically shocked collisionless plasmas. Such sources often exhibit highly transient spectra evolving rapidly, compared with source lifetimes. Radiation emitted from these sources is typically associated with non-linear plasma physics, complex field topologies and non-thermal particle distributions. In such circumstances a standard synchrotron paradigm may fail to produce accurate conclusions regarding the underlying physics. Simulating spectral emission and spectral evolution numerically in various relativistic shock scenarios is then the only viable method to determine the detailed physical origin of the emitted spectra. In this Letter we present synthetic radiation spectra representing the early stage development of the filamentation (streaming) instability of an initially unmagnetized plasma, which is relevant for both collisionless shock formation and reconnection dynamics in relativistic astrophysical outflows, as well as for laboratory astrophysics experiments. Results were obtained using a highly efficient in situ diagnostics method, based on detailed particle-in-cell modeling of collisionless plasmas. The synthetic spectra obtained here are compared with those predicted by a semi-analytical model for jitter radiation from the filamentation instability, the latter including self-consistent generated field topologies and particle distributions obtained from the simulations reported upon here. Spectra exhibit dependence on the presence - or absence - of an inert plasma constituent, when comparing baryonic plasmas (i.e. containing protons) with pair plasmas. The results also illustrate that considerable care should be taken when using lower-dimensional models to obtain information about the astrophysical phenomena generating observed spectra.
Relativistic shocks are usually thought to occur in violent astrophysical explosions. These collisionless shocks are mediated by a plasma kinetic streaming instability, often loosely referred to as the Weibel instability, which generates strong magne tic fields from scratch very efficiently. In this review paper we discuss the shock micro-physics and present a recent model of pre-conditioning of an initially unmagnetized upstream region via the cosmic-ray-driven Weibel-type instability.
Weibel instability turns out to be the a ubiquitous phenomenon in High-Energy Density environments, ranging from astrophysical sources, e.g., gamma-ray bursts, to laboratory experiments involving laser-produced plasmas. Relativistic particles (electr ons) radiate in the Weibel-produced magnetic fields in the Jitter regime. Conventionally, in this regime, the particle deflections are considered to be smaller than the relativistic beaming angle of 1/$gamma$ ($gamma$ being the Lorentz factor of an emitting particle) and the particle distribution is assumed to be isotropic. This is a relatively idealized situation as far as lab experiments are concerned. We relax the assumption of the isotropy of radiating particle distribution and present the extension of the jitter theory amenable for comparisons with experimental data.
Jitter radiation is produced by relativistic electrons moving in turbulent small-scale magnetic fields such as those produced by streaming Weibel-type instabilities at collisionless shocks in weakly magnetized media. Here we present a comprehensive s tudy of the dependence of the jitter radiation spectra on the properties of, in general, anisotropic magnetic turbulence. We have obtained that the radiation spectra do reflect, to some extent, properties of the magnetic field spatial distribution, yet the radiation field is anisotropic and sensitive to the viewing direction with respect to the field anisotropy direction. We explore the parameter space of the magnetic field distribution and its effect on the radiation spectrum. Some important results include: the presence of the harder-than-synchrotron segment below the peak frequency at some viewing angles, the presence of the high-frequency power-law tail even for a monoenergetic distribution of electrons, the dependence of the peak frequency on the field correlation length rather than the field strength, the strong correlation of the spectral parameters with the viewing angle. In general, we have found that even relatively minor changes in the magnetic field properties can produce very significant effects upon the jitter radiation spectra. We consider these results to be important for accurate interpretation of prompt gamma-ray burst spectra and possibly other sources.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا