ترغب بنشر مسار تعليمي؟ اضغط هنا

Angular Dependence of Jitter Radiation Spectra from Small-Scale Magnetic Turbulence

222   0   0.0 ( 0 )
 نشر من قبل Sarah Reynolds
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Jitter radiation is produced by relativistic electrons moving in turbulent small-scale magnetic fields such as those produced by streaming Weibel-type instabilities at collisionless shocks in weakly magnetized media. Here we present a comprehensive study of the dependence of the jitter radiation spectra on the properties of, in general, anisotropic magnetic turbulence. We have obtained that the radiation spectra do reflect, to some extent, properties of the magnetic field spatial distribution, yet the radiation field is anisotropic and sensitive to the viewing direction with respect to the field anisotropy direction. We explore the parameter space of the magnetic field distribution and its effect on the radiation spectrum. Some important results include: the presence of the harder-than-synchrotron segment below the peak frequency at some viewing angles, the presence of the high-frequency power-law tail even for a monoenergetic distribution of electrons, the dependence of the peak frequency on the field correlation length rather than the field strength, the strong correlation of the spectral parameters with the viewing angle. In general, we have found that even relatively minor changes in the magnetic field properties can produce very significant effects upon the jitter radiation spectra. We consider these results to be important for accurate interpretation of prompt gamma-ray burst spectra and possibly other sources.



قيم البحث

اقرأ أيضاً

235 - R. Moll 2009
We consider the conditions under which a rotating magnetic object can produce a magnetically powered outflow in an initially unmagnetized medium stratified under gravity. 3D MHD simulations are presented in which the footpoints of localized, arcade-s haped magnetic fields are put into rotation. It is shown how the effectiveness in producing a collimated magnetically powered outflow depends on the rotation rate, the strength and the geometry of the field. The flows produced by uniformly rotating, non-axisymmetric fields are found to consist mainly of buoyant plumes heated by dissipation of rotational energy. Collimated magnetically powered flows are formed if the field and the rotating surface are arranged such that a toroidal magnetic field is produced. This requires a differential rotation of the arcades footpoints. Such jets are well-collimated; we follow their propagation through the stratified atmosphere over 100 times the source size. The magnetic field is tightly wound and its propagation is dominated by the development of non-axisymmetric instabilities. We observe a Poynting flux conversion efficiency of over 75% in the longest simulations. Applications to the collapsar model and protostellar jets are discussed.
Various astrophysical studies have motivated the investigation of the transport of high energy particles in magnetic turbulence, either in the source or en route to the observation sites. For strong turbulence and large rigidity, the pitch-angle scat tering rate is governed by a simple law involving a mean free path that increases proportionally to the square of the particle energy. In this paper, we show that perpendicular diffusion deviates from this behavior in the presence of a mean field. We propose an exact theoretical derivation of the diffusion coefficients and show that a mean field significantly changes the transverse diffusion even in the presence of a stronger turbulent field. In particular, the transverse diffusion coefficient is shown to reach a finite value at large rigidity instead of increasing proportionally to the square of the particle energy. Our theoretical derivation is corroborated by a dedicated Monte Carlo simulation. We briefly discuss several possible applications in astrophysics.
Black hole - accretion disc systems are the central engines of relativistic jets from stellar to galactic scales. We numerically quantify the unsteady outgoing Poynting flux through the horizon of a rapidly spinning black hole endowed with a rotating accretion disc. The disc supports small-scale, concentric, flux tubes with zero net magnetic flux. Our General Relativistic force-free electrodynamics simulations follow the accretion onto the black hole over several hundred dynamical timescales in 3D. For the case of counter-rotating accretion discs, the average process efficiency reaches up to $leftlangleepsilonrightrangleapprox 0.43$, compared to a stationary energy extraction by the Blandford/Znajek process. The process efficiency depends on the cross-sectional area of the loops, i.e. on the product $ltimes h$, where $l$ is the radial loop thickness and $h$ its vertical scale height. We identify a strong correlation between efficient electromagnetic energy extraction and the quasi-stationary setting of ideal conditions for the operation of the Blandford/Znajek process (e.g. optimal field line angular velocity and fulfillment of the so-called Znajek condition). Remarkably, the energy extraction operates intermittently (alternating episodes of high and low efficiency) without imposing any large-scale magnetic field embedding the central object. Scaling our results to supermassive black holes, we estimate that the typical variability timescale of the system is of the order of days to months. Such timescales may account for the longest variability scales of TeV emission observed, e.g. in M87.
90 - N. Bucciantini 2017
Pulsar Wind Nebulae (PWNe) constitute an ideal astrophysical environment to test our current understanding of relativistic plasma processes. It is well known that magnetic fields play a crucial role in their dynamics and emission properties. At prese nt, one of the main issues concerns the level of magnetic turbulence present in these systems, which in the absence of space resolved X-ray polarization measures cannot be directly constrained. In this work we investigate, for the first time using simulated synchrotron maps, the effect of a small scale fluctuating component of the magnetic field on the emission properties in X-ray. We illustrate how to include the effects of a turbulent component in standard emission models for PWNe, and which consequences are expected in terms of net emissivity and depolarization, showing that the X-ray surface brightness maps can provide already some rough constraints. We then apply our analysis to the Crab and Vela nebulae and, by comparing our model with Chandra and Vela data, we found that the typical energies in the turbulent component of the magnetic field are about 1.5 to 3 times the one in the ordered field.
389 - Jirong Mao , Jiancheng Wang 2021
The synchrotron mechanism has the radiation limit of about 160 MeV, and it is not possible to explain the very high energy (VHE) photons that are emitted by high-energy objects. Inverse Compton scattering as a traditional process is applied for the e xplanation of the VHE emission. In this paper, jitter radiation, the relativistic electron radiation in the random and small-scale magnetic field, is proposed to be a possible mechanism to produce VHE photons. The jitter radiation frequency is associated with the perturbation field. The spectral index of the jitter radiation is dominated by the kinetic turbulence. We utilize the jitter radiation to explain the gamma-ray burst (GRB 190114C and GRB 180720B) VHE emissions that were recently detected by the Imaging Atmospheric Cherenkov Telescopes. We suggest that this mechanism can be applied to other kinds of VHE sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا