ترغب بنشر مسار تعليمي؟ اضغط هنا

RadioAstron space-ground VLBI observations of the pulsar B0950+08, conducted with the 10-m space radio telescope in conjunction with the Arecibo 300-m telescope and Westerbork Synthesis Radio Telescope at a frequency of 324 MHz, were analyzed in orde r to investigate plasma inhomogeneities in the direction of this nearby pulsar. The observations were conducted at a spacecraft distance of 330,000 km, resulting in a projected baseline of 220,000 km, providing the greatest angular resolution ever achieved at meter wavelengths. Our analysis is based on fundamental behavior of structure and coherence functions. We find that the pulsar shows scintillation on two frequency scales, both much less than the observing frequency; but modulation is less than 100%. We infer that the scattering is weak, but a refracting wedge disperses the scintillation pattern. The refraction angle of this cosmic prism is measured as theta_0=1.1 - 4.4 mas, with the refraction direction being approximately perpendicular to the observer velocity. We show that the observed parameters of scintillation effects indicate that two plasma layers lie along the line of sight to the pulsar, at distances of 4.4 - 16.4 pc and 26 - 170 pc, and traveling in different directions relative to the line of sight. Spectra of turbulence for the two layers are found to follow a power law with the indices gamma_1 = gamma_2 = 3.00 +/- 0.08, significantly different from the index expected for a Kolmogorov spectrum of turbulence, gamma=11/3.
Interstellar scintillations of pulsars PSR B0809+74 and B0950+08 have been studied using observations at low frequencies (41, 62, 89, and 112 MHz). Characteristic temporal and frequency scales of diffractive scintillations at these frequencies have b een determined. The comprehensive analysis of the frequency and temporal structure functions reduced to the same frequency has shown that the spectrum of interstellar plasma inhomogeneities toward both pulsars is described by a power law. The exponent of the spectrum of fluctuations of interstellar plasma inhomogeneities toward PSR B0950+08 (n = 3.00 +- 0.05) appreciably differs from the Kolmogorov exponent. Toward PSR B0809+74 the spectrum is a power law with an exponent n = 3.7 +- 0.1. A strong angular refraction has been detected toward PSR B0950+08. The distribution of inhomogeneities along the line of sight has been analyzed; it has been shown that the scintillations of PSR B0950+08 take place on a turbulent layer with enhanced electron density, which is localized at approximately 10 pc from the observer. For PSR B0809+74 the distribution of inhomogeneities is quasi-uniform. Mean-square fluctuations of electron density on inhomogeneities with a characteristic scale rho_0 = 10^7 m toward four pulsars have been estimated. On this scale the local turbulence level in the 10-pc layer is 20 times higher than in an extended region responsible for the scintillations of PSR B0809+74.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا