ترغب بنشر مسار تعليمي؟ اضغط هنا

RadioAstron Studies of the Nearby, Turbulent Interstellar Plasma With the Longest Space-Ground Interferometer Baseline

78   0   0.0 ( 0 )
 نشر من قبل Carl R. Gwinn
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

RadioAstron space-ground VLBI observations of the pulsar B0950+08, conducted with the 10-m space radio telescope in conjunction with the Arecibo 300-m telescope and Westerbork Synthesis Radio Telescope at a frequency of 324 MHz, were analyzed in order to investigate plasma inhomogeneities in the direction of this nearby pulsar. The observations were conducted at a spacecraft distance of 330,000 km, resulting in a projected baseline of 220,000 km, providing the greatest angular resolution ever achieved at meter wavelengths. Our analysis is based on fundamental behavior of structure and coherence functions. We find that the pulsar shows scintillation on two frequency scales, both much less than the observing frequency; but modulation is less than 100%. We infer that the scattering is weak, but a refracting wedge disperses the scintillation pattern. The refraction angle of this cosmic prism is measured as theta_0=1.1 - 4.4 mas, with the refraction direction being approximately perpendicular to the observer velocity. We show that the observed parameters of scintillation effects indicate that two plasma layers lie along the line of sight to the pulsar, at distances of 4.4 - 16.4 pc and 26 - 170 pc, and traveling in different directions relative to the line of sight. Spectra of turbulence for the two layers are found to follow a power law with the indices gamma_1 = gamma_2 = 3.00 +/- 0.08, significantly different from the index expected for a Kolmogorov spectrum of turbulence, gamma=11/3.

قيم البحث

اقرأ أيضاً

The aim of our work was to study the spatial structure of inhomogeneities of interstellar plasma in the directions of five pulsars: B0823+26, B0834+06, B1237+25, B1929+10, and B2016+28. Observations of these pulsars were made with RadioAstron space-g round radio interferometer at 324 MHz. We measured the angular size of the scattering disks to be in range between 0.63 and 3.2 mas. We determined the position of scattering screens on the line of sight. Independent estimates of the distances to the screens were made from the curvature of parabolic arcs revealed in the secondary spectra of four pulsars. The model of uniform distribution of inhomogeneities on the line of sight is not suitable. According to the results, we came to the conclusion that scattering is mainly produced by compact plasma layers and the uniform model of inhomogeneties distribution on the line of sight in not applicable.
We report on slow phase variations of the response of the space-ground radio interferometer RadioAstron during observations of pulsar B0329+54. The phase variations are due to the ionosphere and clearly distinguishable from effects of interstellar sc intillation. Observations were made in a frequency range of 316-332~MHz with the 110-m Green Bank Telescope and the 10-m RadioAstron telescope in 1-hour sessions on 2012 November 26, 27, 28, and 29 with progressively increasing baseline projections of about 60, 90, 180, and 240 thousand kilometres. Quasi-periodic phase variations of interferometric scintles were detected in two observing sessions with characteristic time-scales of 12 and 10 minutes and amplitudes of up to 6.9~radians. We attribute the variations to the influence of medium-scale Travelling Ionospheric Disturbances. The measured amplitude corresponds to variations in vertical total electron content in ionosphere of about $0.1times10^{16}, mathrm{m}^{-2}$. Such variations would noticeably constrain the coherent integration time in VLBI studies of compact radio sources at low frequencies.
77 - N. S. Kardashev 2013
RadioAstron is a Russian space based radio telescope with a ten meter dish in a highly elliptical orbit with an eight to nine day period. RadioAstron works together with Earth based radio telescopes to give interferometer baselines extending up to 35 0,000 km, more than an order of magnitude improvement over what is possible from earth based very long baseline interferometry. Operating in four frequency bands, 1.3, 6, 18, and 92 cm, the corresponding resolutions are 7, 35, 100, and 500 microarcseconds respectively in the four wavelength bands.
The RadioAstron space radio telescope provides a unique opportunity to study the extreme brightness temperatures ($mathrm{T_B }$) in AGNs with unprecedented long baselines of up to 28 Earth diameters. Since interstellar scintillation (ISS) may affect the visibilities observed with space VLBI (sVLBI), a complementary ground based flux density monitoring of the RadioAstron targets, which is performed near in time to the VLBI observation, could be beneficial. The combination/comparison with the sVLBI data can help to unravel the relative influence of source intrinsic and ISS induced effects, which in the end may alter the conclusions on the $mathrm{T_B }$ measurements from sVLBI. Since 2013, a dedicated monitoring program has been ongoing to observe the ISS of RadioAstron AGN targets with a number of radio telescopes. Here we briefly introduce the program and present results from the statistical analysis of the Effelsberg monitoring data. We discuss the possible effects of ISS on $mathrm{T_B }$ measurements for the RadioAstron target B0529+483 as a case study.
A unique test of general relativity is possible with the space radio telescope RadioAstron. The ultra-stable on-board hydrogen maser frequency standard and the highly eccentric orbit make RadioAstron an ideal instrument for probing the gravitational redshift effect. Large gravitational potential variation, occurring on the time scale of $sim$24 hr, causes large variation of the on-board H-maser clock rate, which can be detected via comparison with frequency standards installed at various ground radio astronomical observatories. The experiment requires specific on-board hardware operating modes and support from ground radio telescopes capable of tracking the spacecraft continuously and equipped with 8.4 or 15 GHz receivers. Our preliminary estimates show that $sim$30 hr of the space radio telescopes observational time are required to reach $sim 2times10^{-5}$ accuracy in the test, which would constitute a factor of 10 improvement over the currently achieved best result.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا