ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a voltage-biased Normal metal-Insulator-Superconductor (NIS) tunnel junction, connected to a high-temperature external electromagnetic environment. This model system features the commonly observed subgap leakage current in NIS junctions t hrough photon-assisted tunneling which is detrimental for applications. We first consider a NIS junction directly coupled to the environment and analyze the subgap leakage current both analytically and numerically; we discuss the link with the phenomenological Dynes parameter. Then we focus on a circuit where a low-temperature lossy transmission line is inserted between the NIS junction and the environment. We show that the subgap leakage current is exponentially suppressed as the length, $ell$, and the resistance per unit length, $R_0$, of the line are increased. We finally discuss our results in view of the performance of NIS junctions in applications.
Controlling electrons at the level of elementary charge $e$ has been demonstrated experimentally already in the 1980s. Ever since, producing an electrical current $ef$, or its integer multiple, at a drive frequency $f$ has been in a focus of research for metrological purposes. In this review we first discuss the generic physical phenomena and technical constraints that influence charge transport. We then present the broad variety of proposed realizations. Some of them have already proven experimentally to nearly fulfill the demanding needs, in terms of transfer errors and transfer rate, of quantum metrology of electrical quantities, whereas some others are currently just wild ideas, still often potentially competitive if technical constraints can be lifted. We also discuss the important issues of read-out of single-electron events and potential error correction schemes based on them. Finally, we give an account of the status of single-electron current sources in the bigger framework of electric quantum standards and of the future international SI system of units, and briefly discuss the applications and uses of single-electron devices outside the metrological context.
We provide a direct proof of two-electron Andreev transitions in a superconductor - normal metal tunnel junction by detecting them in a real-time electron counting experiment. Our results are consistent with ballistic Andreev transport with an order of magnitude higher rate than expected for a uniform barrier, suggesting that only part of the interface is effectively contributing to the transport. These findings are quantitatively supported by our direct current measurements in single-electron transistors with similar tunnel barriers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا