ترغب بنشر مسار تعليمي؟ اضغط هنا

The Kubo formula for the electrical conductivity is rewritten in terms of a sum of Drude-like contributions associated to the exact eigenstates of the interacting system, each characterized by its own frequency-dependent relaxation time. The structur e of the novel and equivalent formulation, weighting the contribution from each eigenstate by its Boltzmann occupation factor, simplifies considerably the access to the static properties (dc conductivity) and resolves the long standing difficulties to recover the Boltzmann result for dc conductivity from the Kubo formula. It is shown that the Boltzmann result, containing the correct transport scattering time instead of the electron lifetime determined by the Green function, can be recovered in problems with elastic and inelastic scattering at the lowest order of interaction.
We study a single polaron in the Su-Schrieffer-Heeger (SSH) model using four different techniques (three numerical and one analytical). Polarons show a smooth crossover from weak to strong coupling, as a function of the electron-phonon coupling stren gth $lambda$, in all models where this coupling depends only on phonon momentum $q$. In the SSH model the coupling also depends on the electron momentum $k$; we find it has a sharp transition, at a critical coupling strength $lambda_c$, between states with zero and nonzero momentum of the ground state. All other properties of the polaron are also singular at $lambda = lambda_c$, except the average number of phonons in the polaronic cloud. This result is representative of all polarons with coupling depending on $k$ and $q$, and will have important experimental consequences (eg., in ARPES and conductivity experiments).
We develop a novel self-consistent approach for studying the angle resolved photoemission spectra (ARPES) of a hole in the t-J-Holstein model giving perfect agreement with numerically exact Diagrammatic Monte Carlo data at zero temperature for all re gimes of electron-phonon coupling. Generalizing the approach to finite temperatures we find that the anomalous temperature dependence of the ARPES in undoped cuprates is explained by cooperative interplay of coupling of the hole to magnetic fluctuations and strong electron-phonon interaction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا