ترغب بنشر مسار تعليمي؟ اضغط هنا

In applications of scanning probe microscopy, images are acquired by raster scanning a point probe across a sample. Viewed from the perspective of compressed sensing (CS), this pointwise sampling scheme is inefficient, especially when the target imag e is structured. While replacing point measurements with delocalized, incoherent measurements has the potential to yield order-of-magnitude improvements in scan time, implementing the delocalized measurements of CS theory is challenging. In this paper we study a partially delocalized probe construction, in which the point probe is replaced with a continuous line, creating a sensor which essentially acquires line integrals of the target image. We show through simulations, rudimentary theoretical analysis, and experiments, that these line measurements can image sparse samples far more efficiently than traditional point measurements, provided the local features in the sample are enough separated. Despite this promise, practical reconstruction from line measurements poses additional difficulties: the measurements are partially coherent, and real measurements exhibit nonidealities. We show how to overcome these limitations using natural strategies (reweighting to cope with coherence, blind calibration for nonidealities), culminating in an end-to-end demonstration.
79 - M. Rosa , C. Barou , V. Esposito 2019
Currently, additive manufacturing of ceramics by stereolithography (SLA) is limited to single materials and by a poor thickness resolution that strongly depends on the ceramic particles-UV light interaction. Combining selective laser curing with inkj et printing represents a novel strategy to overcome these constrains. Nonetheless, this approach requires UV-curable inks that allow hardening of the printed material and sintering to high density. In this work, we report how to design an ink for inkjet printing of yttria stabilized zirconia (YSZ) which can be impressed by addition of UV-curable monomers. We especially show how the formulation of the inks and particularly the UV-monomer concentration impacts the printability and the UV-curing. This leads to prints that are resistant to solvent washing first and densify to 96% dense YSZ layers after sintering.
127 - V. Esposito , L. Rettig , E. Abreu 2017
We use femtosecond x-ray diffraction to study the structural response of charge and orbitally ordered Pr$_{1-x}$Ca$_x$MnO$_3$ thin films across a phase transition induced by 800 nm laser pulses. By investigating the dynamics of both superlattice refl ections and regular Bragg peaks, we disentangle the different structural contributions and analyze their relevant time-scales. The dynamics of the structural and charge order response are qualitatively different when excited above and below a critical fluence $f_c$. For excitations below $f_c$ the charge order and the superlattice is only partially suppressed and the ground state recovers within a few tens of nanosecond via diffusive cooling. When exciting above the critical fluence the superlattice vanishes within approximately half a picosecond followed by a change of the unit cell parameters on a 10 picoseconds time-scale. At this point all memory from the symmetry breaking is lost and the recovery time increases by many order of magnitudes due to the first order character of the structural phase transition.
We employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-metal transition in the doped manganite Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ after resonant excitation of a high-frequency infrared-active lat tice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drive these dynamics, highlighting a new avenue of nonlinear phonon control.
66 - V. Esposito , R. Walter , P. Jean 2015
Aims. The high energy spectrum of 3C 273 is usually understood in terms of inverse-Compton emission in a relativistic leptonic jet. This model predicts variability patterns and delays that could be tested with simultaneous observations from the radio to the GeV range. Methods. The instruments IBIS, SPI, JEM-X on board INTEGRAL, PCA on board RXTE, and LAT on board Fermi have enough sensitivity to follow the spectral variability of 3C 273 from the keV to the GeV. We looked for correlations between the different energy bands, including radio data at 37 GHz collected at the Metsahovi Radio Observatory and built quasi-simultaneous multiwavelength spectra in the high energy domain when the source is flaring either in the X-rays or in the {gamma} rays. Results. Both temporal and spectral analysis suggest a two-component model to explain the complete high energy spectrum. X-ray emission is likely dominated by a Seyfert-like component while the {gamma}-ray emission is dominated by a blazar-like component produced by the relativistic jet. The variability of the blazar-like component is discussed, comparing the spectral parameters in the two different spectral states. Changes of the electron Lorentz factor are found to be the most likely source of the observed variability.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا