ﻻ يوجد ملخص باللغة العربية
We use femtosecond x-ray diffraction to study the structural response of charge and orbitally ordered Pr$_{1-x}$Ca$_x$MnO$_3$ thin films across a phase transition induced by 800 nm laser pulses. By investigating the dynamics of both superlattice reflections and regular Bragg peaks, we disentangle the different structural contributions and analyze their relevant time-scales. The dynamics of the structural and charge order response are qualitatively different when excited above and below a critical fluence $f_c$. For excitations below $f_c$ the charge order and the superlattice is only partially suppressed and the ground state recovers within a few tens of nanosecond via diffusive cooling. When exciting above the critical fluence the superlattice vanishes within approximately half a picosecond followed by a change of the unit cell parameters on a 10 picoseconds time-scale. At this point all memory from the symmetry breaking is lost and the recovery time increases by many order of magnitudes due to the first order character of the structural phase transition.
Neutron scattering measurements on a magnetoresistive manganite La$_{0.75}$(Ca$_{0.45}$Sr$_{0.55}$)$_{0.25}$MnO$_3$ show that uncorrelated dynamic polaronic lattice distortions are present in both the orthorhombic (O) and rhombohedral (R) paramagneti
A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations along the nodal (diagonal) and antinodal (parallel to the Cu-O bonds) directions in momentum space, generally assumed to
We investigate the behavior of ultrasharp metamagnetic transitions in La(5/8-y)Nd(y)Ca(3/8)MnO(3) manganites. These compounds change from a low temperature ferromagnetic metallic state at low Nd doping to a charge-ordered antiferromagnetic insulator
We present angle-resolved photoemission studies of (La1-zPrz)2-2xSr1+2xMn2O7 with x=0.4 and z=0.1,0.2 and 0.4 along with density functional theory calculations and x-ray scattering data. Our results show that the bilayer splitting in the ferromagneti
The gigantic reduction of the electric resistivity under the applied magnetic field, CMR effect, is now widely accepted to appear in the vicinity of the insulator to metal transition of the perovskite manganites. Recently, we have discovered the firs