ترغب بنشر مسار تعليمي؟ اضغط هنا

We have been monitoring the binary system V0332+53 (optical counterpart is BQ Cam) since 2004 using 45 cm ROTSEIIId telescope and RTT150 (Russian-Turkish 1.5 m Telescope) located at Bakirlitepe, Antalya, Turkey. We report on the long-term variability of this system up to the present date. There exists a fading of 0.2 mag in the light of BQ Cam after MJD 53400. The fading in the light curve of BQ Cam could be due to a decrease in the density or in the size of the circumstellar disk. We present optical spectroscopic observations obtained before (at MJD 54730) and during (at MJD 54768) the new X-ray activity reported by Krimm et al. (2008). The observed Ha line profiles were single-peaked and almost symmetric. The present EW values are found to be similar to the ones observed during the fading of infrared magnitudes of Negueruela et al. (1999). Ha emission lines were found to be red-shifted by ~140 km/s which were larger than the findings of Corbet et al. (1986). We suggest that brightening of the disk after MJD 54700 may be due to the precession of the disk.
Using the archival RXTE/ASM and SWIFT/BAT observations, the new orbital phases of Type I outbursts of EXO 2030+375 are estimated. A possible correlation between the Type II outburst and optical brightness variations is investigated. In order to estim ate the phases of Type I outbursts, we fitted Gaussian profiles to the RXTE/ASM and SWIFT/BAT light curves. The time corresponding to the maximum value of the profiles is treated as the arrival time of Type I outburst. We used differential magnitudes in the time-series analysis of the optical light curve. MIDAS and its suitable packages were used to reduce and analyze the spectra. Prior to the Type II outburst, orbital phases of Type I outbursts were delayed for 6 days after the periastron passage, which is consistent with findings of Wilson et al., (2002, 2005). After the giant Type II outburst, the phase of Type I outbursts underwent a sudden shift of 13 days after the periastron passage. The amplitudes of Type I outbursts were increased between MJD 52500 and 53500. These amplitudes then decreased for 10 orbital cycles until the Type II outburst was triggered. If the change of outburst amplitudes correlated with the mass accretion, then during the decrease of these amplitudes mass should be deposited in a disk around neutron star temporarily. The release of this stored mass may ignite the Type II outburst. We report that the optical light curve became fainter by 0.4 mag during the decrease of amplitude of the Type I outbursts. The observed H$alpha$ profiles and their equivalent widths during the decay and after the giant outburst are consistent with previous observations of the system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا