ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-term optical observations of Be/X-Ray binary system V0332+53

118   0   0.0 ( 0 )
 نشر من قبل Sinan Kaan Yerli
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have been monitoring the binary system V0332+53 (optical counterpart is BQ Cam) since 2004 using 45 cm ROTSEIIId telescope and RTT150 (Russian-Turkish 1.5 m Telescope) located at Bakirlitepe, Antalya, Turkey. We report on the long-term variability of this system up to the present date. There exists a fading of 0.2 mag in the light of BQ Cam after MJD 53400. The fading in the light curve of BQ Cam could be due to a decrease in the density or in the size of the circumstellar disk. We present optical spectroscopic observations obtained before (at MJD 54730) and during (at MJD 54768) the new X-ray activity reported by Krimm et al. (2008). The observed Ha line profiles were single-peaked and almost symmetric. The present EW values are found to be similar to the ones observed during the fading of infrared magnitudes of Negueruela et al. (1999). Ha emission lines were found to be red-shifted by ~140 km/s which were larger than the findings of Corbet et al. (1986). We suggest that brightening of the disk after MJD 54700 may be due to the precession of the disk.



قيم البحث

اقرأ أيضاً

We present the optical spectroscopic observations of X Per from 1999 to 2013 with the 2.16m telescope at Xinglong Station and the 2.4m telescope at Lijiang station, National Astronomical Observatories of China. Combining with the public optical photo metric data, we find certain epochs of anti-correlations between the optical brightness and the intensity of the H{alpha} and HeI 6678 lines, which may be attributed to the mass ejections from the Be star. Alternative explanations are however also possible. The variability of FeII 6317 line in the spectra of X Per might be also caused by the shocked waves formed after the mass ejections from the Be star. The X-ray activities of the system might also be connected with the mass ejection events from the Be star. When the ejected materials were transported from the surface of the Be star to the orbit of neutron star, an X-ray flare could be observed in its X-ray light curves. We use the neutron star as a probe to constrain the motion of the ejected material in the circumstellar disk. With the diffusion time of the ejected material from the surface of Be star to the orbit of neutron star, the viscosity parameter {alpha} of the circumstellar disk is estimated to be 0.39 and 0.28 for the different time, indicating that the disk around Be star may be truncated by the neutron star at the 2:1 resonance radius and Type I X-ray outburst is unlikely to be observed in X Per.
Aims: We present a study of the Be/X-ray binary system V 0332+53 with the main goal of characterizing its behavior mainly during the intermediate-luminosity X-ray event on 2008. In addition, we aim to contribute to the understanding of the global beh avior of the donor companion by including optical data from our dedicated campaign starting on 2006. Methods: V 0332+53 was observed by RXTE and Swift during the decay of the intermediate-luminosity X-ray outburst of 2008, as well as with Suzaku before the rising of the third normal outburst of the 2010 series. In addition, we present recent data from the Spanish ground-based astronomical observatories of El Teide (Tenerife), Roque de los Muchachos (La Palma), and Sierra Nevada (Granada), and since 2006 from the Turkish TUBITAK National Observatory (Antalya). We have performed temporal analyses to investigate the transient behaviour of this system during several outbursts. Results: Our optical study revealed that continuous mass ejection episodes from the Be star have been taking place since 2006 and another one is currently ongoing. The broad-band 1-60 keV X-ray spectrum of the neutron star during the decay of the 2008 outburst was well fitted with standard phenomenological models, enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron K-alpha fluorescence line at 6.4 keV. For the first time in V 0332+53 we tentatively see an increase of the cyclotron line energy with increasing flux (although further and more sensitive observations are needed to confirm this). Regarding the fast aperiodic variability, we detect a Quasi-Periodic Oscillation (QPO) at 227+-9 mHz only during the lowest luminosities. The latter fact might indicate that the inner regions surrounding the magnetosphere are more visible during the lowest flux states.
Be/X-ray binary systems provide an excellent opportunity to study the physics around neutron stars through the study of the behaviour of matter around them. Intermediate and low-luminosity type outbursts are interesting because they provide relativel y clean environments around neutron stars. In these conditions the physics of the magnetosphere around the neutron star can be better studied without being very disturbed by other phenomena regarding the transfer of matter between the two components of the Be/X-ray binary system. A recent study presents the optical longterm evolution of the Be/X-ray binary V 0332+53 plus the X-ray emission mainly during the intermediate-luminosity outburst on 2008. In this paper we comment on the context of these observations and on the properties that can be derived through the analysis of them.
The propeller effect should cut off accretion in fast-spinning neutron star high mass X-ray binaries (HMXBs) at low mass transfer rates. However, accretion continues in some HMXBs at $L_{x} < 10^{34}$ erg s$^{-1}$, as evidenced by continuing pulsatio ns. Indications of spectral softening in systems in the propeller regime suggest that some HMXBs are undergoing fundamental changes in their accretion regime. A 39 ks textit{XMM-Newton} observation of the transient HMXB V0332+53 found it at a very low X-ray luminosity ($L_{x} sim 4times 10^{32}$ erg s${^{-1}}$). A power-law spectral fit requires an unusually soft spectral index ($4.4^{+0.9}_{-0.6}$), while a magnetized neutron star atmosphere model, with temperature lt 6.7$pm 0.2$ K and inferred emitting radius of $sim0.2-0.3$ km, gives a good fit. We suggest that the quiescent X-ray emission from V0332+53 is mainly from a hot spot on the surface of the neutron star. We could not detect pulsations from V0332+53, due to the low count rate. Due to the high $N_H$, thermal emission from the rest of the neutron star could be only weakly constrained, to lt $<$6.14$^{+0.05}_{-6.14}$ K, or $<3times10^{33}$ erg s${^{-1}}$.
58 - P. Reig 2005
We have used INTEGRAL & RXTE data to investigate the timing properties of the source in correlation with its spectral states as defined by different positions in the colour-colour diagram. The source shows two distinct branches in the colour-colour d iagram that resemble those of the Z sources. The hard branch (similar to the horizontal branch of Z sources) is characterised by a low-amplitude change of the hard colour compared to the change in the soft colour. In the soft branch (analogue to the normal branch) the amplitude of variability of the hard colour is about three times larger than that of the soft colour. As the count rate decreases the source moves up gradually through the soft to the hard branch. The aperiodic variability (excluding the pulse noise) consists of band-limited noise (represented by three broad Lorentzian components) and two QPOs at 0.05 Hz and 0.22 Hz. The strength of the lower frequency QPO increases as the source approaches the hard branch (similar to HBOs in Z sources). The higher frequency QPO reaches maximum significance when the source is in the middle of the branch (like NBOs). We have performed the first measurements of phase lags in the band limited noise below 8 Hz in an accreting X-ray pulsar and found that soft lags dominate at high frequencies. Above the pulse frequency (0.23 Hz), the amplitude of the lag increases as the X-ray flux increases. The Z topology appears to be a signature of the neutron star binaries as it is present in all types of neutron-star binaries (Z, atoll and, as we show here, in accreting pulsars as well). However, the motion along this track, the time scales through the different branches of the diagram and the aperiodic variability associated with portions of the Z track differ for each subclass of neutron-star binary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا