ترغب بنشر مسار تعليمي؟ اضغط هنا

85 - G. Parmentier AIfA 2008
We investigate the impact of the star formation efficiency in cluster forming cores on the evolution of the mass in star clusters over the age range 1-100Myr, when star clusters undergo their infant weight-loss/mortality phase. Assuming a constant fo rmation rate of gas-embedded clusters and a weak tidal field, we show that the ratio between the total mass in stars bound to the clusters over that age range and the total mass in stars initially formed in gas-embedded clusters is a strongly increasing function of the averaged local SFE, with little influence from any assumed core mass-radius relation. Our results suggest that, for young starbursts with estimated tidal field strength and known recent star formation history, observed cluster-to-star mass ratios, once corrected for the undetected clusters, constitute promising probes of the local SFE, without the need of resorting to gas mass estimates. Similarly, the mass ratio of stars which remain in bound clusters at the end of the infant mortality/weight-loss phase depends sensitively on the mean local SFE, although the impacts of the width of the SFE distribution function and of the core mass-radius relation require more careful assessment in this case. Following the recent finding by Bastian (2008) that galaxies form, on the average, 8% of their stars in bound clusters regardless of their star formation rate, we raise the hypothesis that star formation in the present-day Universe is characterized by a near-universal distribution for the local SFE. A related potential application of our model consists in tracing the evolution of the local SFE over cosmological lookback times by comparing the age distribution of the total mass in star clusters to that in field stars. We describe model aspects which are still to be worked out before achieving this goal.
Globular Cluster Systems (GCSs) of most early-type galaxies feature two peaks in their optical colour distributions. Blue-peak GCs are believed to be old and metal-poor, whereas the ages, metallicities, and the origin of the red-peak GCs are still be ing debated. We obtained deep K-band photometry and combined it with HST observations in g and z to yield a full SED from optical to near-infrared. This now allows us to break the age-metallicity degeneracy. We used our evolutionary synthesis models GALEV for star clusters to compute a large grid of models with different metallicities and a wide range of ages. Comparing these models to our observations revealed a large population of intermediate-age (1-3 Gyr) and metalrich (~ solar metallicity) globular clusters, that will give us further insights into the formation history of this galaxy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا