ترغب بنشر مسار تعليمي؟ اضغط هنا

When efficient star formation drives cluster formation

102   0   0.0 ( 0 )
 نشر من قبل Genevi\\`eve Parmentier
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the impact of the star formation efficiency in cluster forming cores on the evolution of the mass in star clusters over the age range 1-100Myr, when star clusters undergo their infant weight-loss/mortality phase. Assuming a constant formation rate of gas-embedded clusters and a weak tidal field, we show that the ratio between the total mass in stars bound to the clusters over that age range and the total mass in stars initially formed in gas-embedded clusters is a strongly increasing function of the averaged local SFE, with little influence from any assumed core mass-radius relation. Our results suggest that, for young starbursts with estimated tidal field strength and known recent star formation history, observed cluster-to-star mass ratios, once corrected for the undetected clusters, constitute promising probes of the local SFE, without the need of resorting to gas mass estimates. Similarly, the mass ratio of stars which remain in bound clusters at the end of the infant mortality/weight-loss phase depends sensitively on the mean local SFE, although the impacts of the width of the SFE distribution function and of the core mass-radius relation require more careful assessment in this case. Following the recent finding by Bastian (2008) that galaxies form, on the average, 8% of their stars in bound clusters regardless of their star formation rate, we raise the hypothesis that star formation in the present-day Universe is characterized by a near-universal distribution for the local SFE. A related potential application of our model consists in tracing the evolution of the local SFE over cosmological lookback times by comparing the age distribution of the total mass in star clusters to that in field stars. We describe model aspects which are still to be worked out before achieving this goal.


قيم البحث

اقرأ أيضاً

We present a comprehensive multi-wavelength study of the star-forming region NGC 1893 to explore the effects of massive stars on low-mass star formation. Using near-infrared colours, slitless spectroscopy and narrow-band $Halpha$ photometry in the cl uster region we have identified candidate young stellar objects (YSOs) distributed in a pattern from the cluster to one of the nearby nebulae Sim 129. The $V, (V-I)$ colour-magnitude diagram of the YSOs indicates that majority of these objects have ages between 1 to 5 Myr. The spread in the ages of the YSOs may indicate a non-coeval star formation in the cluster. The slope of the KLF for the cluster is estimated to be $0.34pm0.07$, which agrees well with the average value ($sim 0.4$) reported for young clusters. For the entire observed mass range $0.6 < M/M_odot le 17.7$ the value of the slope of the initial mass function, $`Gamma$, comes out to be $-1.27pm0.08$, which is in agreement with the Salpeter value of -1.35 in the solar neighborhood. However, the value of $`Gamma$ for PMS phase stars (mass range $0.6 < M/M_odot le 2.0$) is found to be $-0.88pm0.09$ which is shallower than the value ($-1.71pm0.20$) obtained for MS stars having mass range $2.5 < M/M_odot le 17.7$ indicating a break in the slope of the mass function at $sim 2 M_odot$. Estimated $`Gamma$ values indicate an effect of mass segregation for main-sequence stars, in the sense that massive stars are preferentially located towards the cluster center. The estimated dynamical evolution time is found to be greater than the age of the cluster, therefore the observed mass segregation in the cluster may be the imprint of the star formation process. There is evidence for triggered star formation in the region, which seems to govern initial morphology of the cluster.
99 - Nate Bastian 2005
We report on a study of young star cluster complexes in the spiral galaxy M51. Recent studies have confirmed that star clusters do not form in isolation, but instead tend to form in larger groupings or complexes. We use {it HST} broad and narrow band images (from both {it WFPC2} and {it ACS}), along with {it BIMA}-CO observations to study the properties and investigate the origin of the e complexes. We find that the complexes are all young ($< 10$ Myr), have sizes between $sim$85 and $sim$240 pc, and have masses between 3-30 $times 10^{4} M_{odot}$. Unlike that found for isolated young star clusters, we find a strong correlation between the complex mass and radius, namely $Mpropto R^{2.33 pm 0.19}$. This is similar to that found for giant molecular clouds (GMCs). By comparing the mass-radius relation of GMCs in M51 to that of the complexes we can estimate the star formation efficiency within the complexes, although this value is heavily dependent on the assumed CO-to-H$_2$ conversion factor. The complexes studied here have the same surface density distribution as individual young star clusters and GMCs. If star formation within the complexes is proportional to the gas density at that point, then the shared mass-radius relation of GMCs and complexes is a natural consequence of their shared density profiles. We briefly discuss possibilities for the lack of a mass-radius relation for young star clusters. We note that many of the complexes show evidence of merging of star clusters in their centres, suggesting that larger star clusters can be produced through the build up of smaller clusters.
Nuclear star clusters (NSCs) are the densest stellar systems in the Universe and are found in the centres of all types of galaxies. They are thought to form via mergers of star clusters such as ancient globular clusters (GCs) that spiral to the centr e as a result of dynamical friction or through in-situ star formation directly at the galaxy centre. There is evidence that both paths occur, but the relative contribution of either channel and their correlation with galaxy properties are not yet constrained observationally. We aim to derive the dominant NSC formation channel for a sample of 25 nucleated galaxies, mostly in the Fornax galaxy cluster, with stellar masses between $M_rm{gal} sim 10^8$ and $10^{10.5} M_odot$ and NSC masses between $M_rm{NSC} sim 10^5$ and $10^{8.5} M_odot$. Using Multi-Unit Spectroscopic Explorer (MUSE) data from the Fornax 3D survey and the ESO archive, we derive star formation histories, mean ages and metallicities of NSCs, and compare them to the host galaxies. In many low-mass galaxies, the NSCs are significantly more metal-poor than the hosts with properties similar to GCs. In contrast, in the massive galaxies, we find diverse star formation histories and cases of ongoing or recent in-situ star formation. Massive NSCs ($> 10^7 M_odot$) occupy a different region in the mass-metallicity diagram than lower mass NSCs and GCs, indicating a different enrichment history. We find a clear transition of the dominant NSC formation channel with both galaxy and NSC mass. We hypothesise that while GC-accretion forms the NSCs of the dwarf galaxies, central star formation is responsible for the efficient mass build up in the most massive NSCs in our sample. At intermediate masses, both channels can contribute. The transition between these formation channels seems to occur at galaxy masses $M_rm{gal} sim 10^9 M_odot$ and NSC masses $M_rm{NSC} sim 10^7 M_odot$.
We investigate the formation and early evolution of star clusters assuming that they form from a turbulent starless clump of given mass bounded inside a parent self-gravitating molecular cloud characterized by a particular mass surface density. As a first step we assume instantaneous star cluster formation and gas expulsion. We draw our initial conditions from observed properties of starless clumps. We follow the early evolution of the clusters up to 20 Myr, investigating effects of different star formation efficiencies, primordial binary fractions and eccentricities and primordial mass segregation levels. We investigate clumps with initial masses of $M_{rm cl}=3000:{rm M}_odot$ embedded in ambient cloud environments with mass surface densities, $Sigma_{rm cloud}=0.1$ and $1:{rm g:cm^{-2}}$. We show that these models of fast star cluster formation result, in the fiducial case, in clusters that expand rapidly, even considering only the bound members. Clusters formed from higher $Sigma_{rm cloud}$ environments tend to expand more quickly, so are soon larger than clusters born from lower $Sigma_{rm cloud}$ conditions. To form a young cluster of a given age, stellar mass and mass surface density, these models need to assume a parent molecular clump that is many times denser, which is unrealistic compared to observed systems. We also show that in these models the initial binary properties are only slightly modified by interactions, meaning that binary properties, e.g., at 20 Myr, are very similar to those at birth. With this study we set up the basis of future work where we will investigate more realistic models of star formation compared to this instantaneous, baseline case.
In a virialized stellar system, the mean-square velocity is a direct tracer of the energy per unit mass of the system. Here, we exploit this to estimate and compare root-mean-square velocities for a large sample of nuclear star clusters and their hos t (late- or early-type) galaxies. Traditional observables, such as the radial surface brightness and second-order velocity moment profiles, are subject to short-term variations due to individual episodes of matter infall and/or star formation. The total mass, energy and angular momentum, on the other hand, are approximately conserved. Thus, the total energy and angular momentum more directly probe the formation of galaxies and their nuclear star clusters, by offering access to more fundamental properties of the nuclear cluster-galaxy system than traditional observables. We find that there is a strong correlation, in fact a near equality, between the root-mean-square velocity of a nuclear star cluster and that of its host. Thus, the energy per unit mass of a nuclear star cluster is always comparable to that of its host galaxy. We interpret this as evidence that nuclear star clusters do not form independently of their host galaxies, but rather that their formation and subsequent evolution are coupled. We discuss how our results can potentially be used to offer a clear and observationally testable prediction to distinguish between the different nuclear star cluster formation scenarios, and/or quantify their relative contributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا