ترغب بنشر مسار تعليمي؟ اضغط هنا

We present high spatial (<300 AU) and spectral (0.07 km/s) resolution Submillimeter Array observations of the dense starless cluster core Oph A-N6, in the 1 mm dust continuum and the 3-2 line of N2H+ and N2D+. The dust continuum observations reveal a compact source not seen in single-dish observations, of size ~1000 AU and mass 0.005-0.01 Modot. The combined line and single-dish observations reveal a core of size 3000 times 1400 AU elongated in a NW-SE direction, with almost no variation in either line width or line center velocity across the map, and very small non-thermal motions. The deuterium fraction has a peak value of ~0.15 and is >0.05 over much of the core. The N2H+ column density profile across the major axis of Oph A-N6 is well represented by an isothermal cylinder, with temperature 20 K, peak density 7.1 times 10^6 cm^{-3}, and N2H+ abundance 2.7 times 10^{-10}. The mass of Oph A-N6 is estimated to be 0.29 Modot, compared to a value of 0.18 Modot from the isothermal cylinder analysis, and 0.63 Modot for the critical mass for fragmentation of an isothermal cylinder. Compared to isolated low-mass cores, Oph A-N6 shows similar narrow line widths and small velocity variation, with a deuterium fraction similar to evolved dense cores. It is significantly smaller than isolated cores, with larger peak column and volume density. The available evidence suggests Oph A-N6 has formed through the fragmentation of the Oph A filament and is the precursor to a low-mass star. The dust continuum emission suggests it may already have begun to form a star.
We present Spitzer Space Telescope IRAC and MIPS observations of a 0.85 deg^2 field including the Corona Australis (CrA) star-forming region. At a distance of 130 pc, CrA is one of the closest regions known to be actively forming stars, particularly within its embedded association, the Coronet. Using the Spitzer data, we identify 51 young stellar objects (YSOs) in CrA which include sources in the well-studied Coronet cluster as well as distributed throughout the molecular cloud. Twelve of the YSOs discussed are new candidates, one of which is located in the Coronet. Known YSOs retrieved from the literature are also added to the list, and a total of 116 candidate YSOs in CrA are compiled. Based on these YSO candidates, the star formation rate is computed to be 12 M_o Myr^-1, similar to that of the Lupus clouds. A clustering analysis was also performed, finding that the main cluster core, consisting of 68 members, is elongated (having an aspect ratio of 2.36), with a circular radius of 0.59 pc and mean surface density of 150 pc^-2. In addition, we analyze outflows and jets in CrA by means of new CO and H_2 data. We present 1.3 mm interferometric continuum observations made with the Submillimeter Array (SMA) covering R CrA, IRS 5, IRS 7, and IRAS 18595-3712 (IRAS 32). We also present multi-epoch H_2 maps and detect jets and outflows, study their proper motions, and identify exciting sources. The Spitzer and ISAAC/VLT observations of IRAS 32 show a bipolar precessing jet, which drives a CO (2-1) outflow detected in the SMA observations. There is also clear evidence for a parsec-scale precessing outflow, E-W oriented, and originating in the SMA 2 region, likely driven by SMA 2 or IRS 7A.
Observations of Lynds Dark Nebula 1221 from the Spitzer Space Telescope are presented. These data show three candidate protostars towards L1221, only two of which were previously known. The infrared observations also show signatures of outflowing mat erial, an interpretation which is also supported by radio observations with the Very Large Array. In addition, molecular line maps from the Five College Radio Astronomy Observatory are shown. One-dimensional dust continuum modelling of two of these protostars, IRS1 and IRS3, is described. These models show two distinctly different protostars forming in very similar environments. IRS1 shows a higher luminosity and larger inner radius of the envelope than IRS3. The disparity could be caused by a difference in age or mass, orientation of outflow cavities, or the impact of a binary in the IRS1 core.
We present Spitzer infrared observations of the starless core L429. The IR images of this core show an absorption feature, caused by the dense core material, at wavelengths <= 70 micron. The core has a steep density profile, and reaches A_V > 35 mag near the center. We show that L429 is either collapsing or in a near-collapse state.
55 - Xuepeng Chen 2008
We present interferometric observations in the 12CO (2-1) line and at 1.3 mm dust continuum of the low-mass protostellar binary system in the cometary globule CG30, using the Submillimeter Array. The dust continuum images resolve two compact sources (CG30N and CG30S), with a linear separation of ~8700 AU and total gas masses of ~1.4 and ~0.6 M_sun, respectively. With the CO images, we discover two high-velocity bipolar molecular outflows, driven by the two sources. The two outflows are nearly perpendicular to each other, showing a quadrupolar morphology. The northern bipolar outflow extends along the southeast (redshifted, with a velocity up to ~23 km/s) and northwest (blueshifted, velocity up to ~30 km/s) directions, while the southern pair has an orientation from southwest (blueshifted, velocity up to 13 km/s) to northeast (redshifted, velocity up to ~41 km/s). The outflow mass of the northern pair, driven by the higher mass source CG30N, is ~9 times larger than that of the southern pair. The discovery of the quadrupolar molecular outflow in the CG30 protobinary system, as well as the presence of other quadrupolar outflows associated with binary systems, demonstrate that the disks in (wide) binary systems are not necessarily co-aligned after fragmentation.
134 - Sherry C. C. Yeh 2007
We have mapped the proto-binary source IRAS 16293-2422 in CO 2-1, 13CO 2-1, and CO 3-2 with the Submillimeter Array (SMA). The maps with resolution of 1.5-5 reveal a single small scale (~3000 AU) bipolar molecular outflow along the east-west directio n. We found that the blueshifted emission of this small scale outflow mainly extends to the east and the redshifted emission to the west from the position of IRAS 16293A. A comparison with the morphology of the large scale outflows previously observed by single-dish telescopes at millimeter wavelengths suggests that the small scale outflow may be the inner part of the large scale (~15000 AU) E-W outflow. On the other hand, there is no clear counterpart of the large scale NE-SW outflow in our SMA maps. Comparing analytical models to the data suggests that the morphology and kinematics of the small scale outflow can be explained by a wide-angle wind with an inclination angle of ~30-40 degrees with respect to the plane of the sky. The high resolution CO maps show that there are two compact, bright spots in the blueshifted velocity range. An LVG analysis shows that the one located 1 to the east of source A is extremely dense, n(H_2)~10^7 cm^-3, and warm, T_kin >55 K. The other one located 1 southeast of source B has a higher temperature of T_kin >65 K but slightly lower density of n(H_2)~10^6 cm^-3. It is likely that these bright spots are associated with the hot core-like emission observed toward IRAS 16293. Since both two bright spots are blueshifted from the systemic velocity and are offset from the protostellar positions, they are likely formed by shocks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا