ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a non-iterative method to deconvolve the spatial response function or the point spread function (PSF) from images taken with the Suzaku X-ray Imaging Spectrometer (XIS). The method is optimized for analyses of extended sources with high ph oton statistics. Suzaku has four XIS detectors each with its own X-ray CCD and X-Ray Telescope (XRT) and has been providing unique opportunities in spatially-resolved spectroscopic analyses of extended objects. The detectors, however, suffer from broad and position-dependent PSFs with their typical half-power density (HPD) of about 110. In the authors view, this shortcoming has been preventing the high collecting area and high spectral resolution of Suzaku to be fully exploited. The present method is intended to recover spatial resolution to ~15 over a dynamic range around 1:100 in the brightness without assuming any source model. Our deconvolution proceeds in two steps: An XIS image is multiplied with the inverse response matrix calculated from its PSF after rebinning CCD pixels to larger-size tiles (typically 6x 6); The inverted image is then adaptively smoothed to obtain the final deconvolved image. The PSF is modeled on a ray-tracing program and an observed point-source image. The deconvolution method has been applied to images of Centaurus A, PSR B1509-58 and RCW 89 taken by one XIS (XIS-1). The results have been compared with images obtained with Chandra to conclude that the spatial resolution has been recovered to ~20 down to regions where surface brightness is about 1:50 of the brightest tile in the image. We believe the spatial resolution and the dynamic range can be improved in the future with higher fidelity PSF modeling and higher precision pointing information.
We describe a new balloon-borne instrument (PoGOLite) capable of detecting 10% polarisation from 200mCrab point-like sources between 25 and 80keV in one 6 hour flight. Polarisation measurements in the soft gamma-ray band are expected to provide a pow erful probe into high-energy emission mechanisms as well as the distribution of magnetic fields, radiation fields and interstellar matter. At present, only exploratory polarisation measurements have been carried out in the soft gamma-ray band. Reduction of the large background produced by cosmic-ray particles has been the biggest challenge. PoGOLite uses Compton scattering and photo-absorption in an array of 217 well-type phoswich detector cells made of plastic and BGO scintillators surrounded by a BGO anticoincidence shield and a thick polyethylene neutron shield. The narrow FOV (1.25msr) obtained with well-type phoswich detector technology and the use of thick background shields enhance the detected S/N ratio. Event selections based on recorded phototube waveforms and Compton kinematics reduce the background to that expected for a 40-100mCrab source between 25 and 50keV. A 6 hour observation on the Crab will differentiate between the Polar Cap/Slot Gap, Outer Gap, and Caustic models with greater than 5 sigma; and also cleanly identify the Compton reflection component in the Cygnus X-1 hard state. The first flight is planned for 2010 and long-duration flights from Sweden to Northern Canada are foreseen thereafter.
We present the angular distribution of gamma rays produced by proton-proton interactions in parameterized formulae to facilitate calculations in astrophysical environments. The parameterization is derived from Monte Carlo simulations of the up-to-dat e proton-proton interaction model by Kamae et al. (2005) and its extension by Kamae et al. (2006). This model includes the logarithmically rising inelastic cross section, the diffraction dissociation process and Feynman scaling violation. The extension adds two baryon resonance contributions: one representing the Delta(1232) and the other representing multiple resonances around 1600 MeV/c^2. We demonstrate the use of the formulae by calculating the predicted gamma-ray spectrum for two different cases: the first is a pencil beam of protons following a power law and the second is a fanned proton jet with a Gaussian intensity profile impinging on the surrounding material. In both cases we find that the predicted gamma-ray spectrum to be dependent on the viewing angle.
58 - Hiroyasu Tajima 2007
We describe the role of GeV gamma-ray observations with GLAST-LAT (Gamma-ray Large Area Space Telescope - Large Area Telescope) in identifying interaction sites of cosmic-ray proton (or hadrons) with interstellar medium (ISM). We expect to detect gam ma rays from neutral pion decays in high-density ISM regions in the Galaxy, Large Magellanic Cloud, and other satellite galaxies. These gamma-ray sources have been detected already with EGRET (Energetic Gamma Ray Experiment Telescope) as extended sources (eg. LMC and Orion clouds) and GLAST-LAT will detect many more with a higher spatial resolution and in a wider spectral range. We have developed a novel image restoration technique based on the Richardson-Lucy algorithm optimized for GLAST-LAT observation of extended sources. Our algorithm calculates PSF (point spread function) for each event. This step is very important for GLAST-LAT and EGRET image analysis since PSF varies more than one order of magnitude from one gamma ray to another depending on its energy as well as its impact point and angle in the instrument. The GLAST-LAT and EGRET image analysis has to cope with Poisson fluctuation due to low number of detected photons for most sources. Our technique incorporates wavelet filtering to minimize effects due to the fluctuation. Preliminary studies on some EGRET sources are presented, which shows potential of this novel image restoration technique for the identification and characterisation of extended gamma-ray sources.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا