ترغب بنشر مسار تعليمي؟ اضغط هنا

There is currently much interest in the recycling of entangled systems, for use in quantum information protocols by sequential observers. In this work, we study the sequential generation of Bell nonlocality via recycling one or both components of two -qubit states. We first give a description of two-valued qubit measurements in terms of measurement bias, strength, and reversibility, and derive useful tradeoff relations between them. Then, we derive one-sided monogamy relations that support the recent Conjecture in [S. Cheng {it et al.}, arXiv:2102.11574], that if the first pair of observers violate Bell nonlocality then a subsequent independent pair cannot. We also answer a question raised in [P. J. Brown and R. Colbeck, Phys. Rev. Lett. textbf{125}, 090401 (2020)], by showing that the conditions given therein for the recycling of one qubit by an arbitrarily large number of observers are sufficient but not necessary. Finally, we find that it is possible to share Bell nonlocality between multiple pairs of independent observers on both sides, if sufficiently many pairs of qubits are shared. Our results are based on a formalism that is applicable to more general problems in recycling entanglement, and hence is expected to aid progress in this field.
We give strong analytic and numerical evidence that, under mild measurement assumptions, two qubits cannot both be recycled to generate Bell nonlocality between multiple independent observers on each side. This is surprising, as under the same assump tions it is possible to recycle just one of the qubits an arbitrarily large number of times [P. J. Brown and R. Colbeck, Phys. Rev. Lett. 125, 090401 (2020)]. We derive corresponding one-sided monogamy relations that rule out two-sided recycling for a wide range of parameters, based on a general tradeoff relation between the strengths and maximum reversibilities of qubit measurements. We also show if the assumptions are relaxed to allow sufficiently biased measurement selections, then there is a narrow range of measurement strengths that allows two-sided recycling for two observers on each side, and propose an experimental test. Our methods may be readily applied to other types of quantum correlations, such as steering and entanglement, and hence to general information protocols involving sequential measurements.
To quantify quantum optical coherence requires both the particle- and wave-natures of light. For an ideal laser beam [1,2,3], it can be thought of roughly as the number of photons emitted consecutively into the beam with the same phase. This number, $mathfrak{C}$, can be much larger than $mu$, the number of photons in the laser itself. The limit on $mathfrak{C}$ for an ideal laser was thought to be of order $mu^2$ [4,5]. Here, assuming nothing about the laser operation, only that it produces a beam with certain properties close to those of an ideal laser beam, and that it does not have external sources of coherence, we derive an upper bound: $mathfrak{C} = O(mu^4)$. Moreover, using the matrix product states (MPSs) method [6,7,8,9], we find a model that achieves this scaling, and show that it could in principle be realised using circuit quantum electrodynamics (QED) [10]. Thus $mathfrak{C} = O(mu^2)$ is only a standard quantum limit (SQL); the ultimate quantum limit, or Heisenberg limit, is quadratically better.
EPR-steering refers to the ability of one observer to convince a distant observer that they share entanglement by making local measurements. Determining which states allow a demonstration of EPR-steering remains an open problem in general. Here, we o utline and demonstrate a method of analytically constructing new classes of two-qubit states which are non-steerable by arbitrary projective measurements, from consideration of local operations performed by the steering party on states known to be non-steerable.
Einstein-Podolsky-Rosen steering is a quantum phenomenon wherein one party influences, or steers, the state of a distant partys particle beyond what could be achieved with a separable state, by making measurements on one half of an entangled state. T his type of quantum nonlocality stands out through its asymmetric setting, and even allows for cases where one party can steer the other, but where the reverse is not true. A series of experiments have demonstrated one-way steering in the past, but all were based on significant limiting assumptions. These consisted either of restrictions on the type of allowed measurements, or of assumptions about the quantum state at hand, by mapping to a specific family of states and analysing the ideal target state rather than the real experimental state. Here, we present the first experimental demonstration of one-way steering free of such assumptions. We achieve this using a new sufficient condition for non-steerability, and, although not required by our analysis, using a novel source of extremely high-quality photonic Werner states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا