ﻻ يوجد ملخص باللغة العربية
EPR-steering refers to the ability of one observer to convince a distant observer that they share entanglement by making local measurements. Determining which states allow a demonstration of EPR-steering remains an open problem in general. Here, we outline and demonstrate a method of analytically constructing new classes of two-qubit states which are non-steerable by arbitrary projective measurements, from consideration of local operations performed by the steering party on states known to be non-steerable.
We give a conceptually simple necessary condition such that a separable quantum operation can be implemented by local operations on subsystems and classical communication between parties (LOCC), a condition which follows from a novel approach to unde
We give a necessary condition that a separable measurement can be implemented by local quantum operations and classical communication (LOCC) in any finite number of rounds of communication, generalizing and strengthening a result obtained previously.
Steering, a quantum property stronger than entanglement but weaker than non-locality in the quantum correlation hierarchy, is a key resource for one-sided device-independent quantum key distribution applications, in which only one of the communicatin
We study the norms of the Bloch vectors for arbitrary $n$-partite quantum states. A tight upper bound of the norms is derived for $n$-partite systems with different individual dimensions. These upper bounds are used to deal with the separability prob
A major challenge in the field of quantum computing is the construction of scalable qubit coupling architectures. Here, we demonstrate a novel tuneable coupling circuit that allows superconducting qubits to be coupled over long distances. We show tha