ترغب بنشر مسار تعليمي؟ اضغط هنا

Conventional uplink equalization in massive MIMO systems relies on a centralized baseband processing architecture. However, as the number of base station antennas increases, centralized baseband processing architectures encounter two bottlenecks, i.e ., the tremendous data interconnection and the high-dimensional computation. To tackle these obstacles, decentralized baseband processing was proposed for uplink equalization, but only applicable to the scenarios with unpractical white Gaussian noise assumption. This paper presents an uplink linear minimum mean-square error (L-MMSE) equalization method in the daisy chain decentralized baseband processing architecture under colored noise assumption. The optimized L-MMSE equalizer is derived by exploiting the block coordinate descent method, which shows near-optimal performance both in theoretical and simulation while significantly mitigating the bottlenecks.
While spin-orbit coupling (SOC), an essential mechanism underlying quantum phenomena from the spin Hall effect to topological insulators, has been widely studied in well-isolated Hermitian systems, much less is known when the dissipation plays a majo r role in spin-orbit-coupled quantum systems. Here, we realize dissipative spin-orbit-coupled bands filled with ultracold fermions, and observe a parity-time ($mathcal{PT}$) symmetry-breaking transition as a result of the competition between SOC and dissipation. Tunable dissipation, introduced by state-selective atom loss, enables the energy gap, opened by SOC, to be engineered and closed at the critical dissipation value, the so-called exceptional point (EP). The realized EP of the non-Hermitian band structure exhibits chiral response when the quantum state changes near the EP. This topological feature enables us to tune SOC and dissipation dynamically in the parameter space, and observe the state evolution is direction-dependent near the EP, revealing topologically robust spin transfer between different quantum states when the quantum state encircles the EP. This topological control of quantum states for non-Hermitian fermions provides new methods of quantum control, and also sets the stage for exploring non-Hermitian topological states with SOC.
130 - Tong Zhao , Gang Liu , Daheng Wang 2021
Learning to predict missing links is important for many graph-based applications. Existing methods were designed to learn the observed association between two sets of variables: (1) the observed graph structure and (2) the existence of link between a pair of nodes. However, the causal relationship between these variables was ignored and we visit the possibility of learning it by simply asking a counterfactual question: would the link exist or not if the observed graph structure became different? To answer this question by causal inference, we consider the information of the node pair as context, global graph structural properties as treatment, and link existence as outcome. In this work, we propose a novel link prediction method that enhances graph learning by the counterfactual inference. It creates counterfactual links from the observed ones, and our method learns representations from both of them. Experiments on a number of benchmark datasets show that our proposed method achieves the state-of-the-art performance on link prediction.
105 - Hanqing Lu , Youna Hu , Tong Zhao 2021
Nowadays, with many e-commerce platforms conducting global business, e-commerce search systems are required to handle product retrieval under multilingual scenarios. Moreover, comparing with maintaining per-country specific e-commerce search systems, having a universal system across countries can further reduce the operational and computational costs, and facilitate business expansion to new countries. In this paper, we introduce a universal end-to-end multilingual retrieval system, and discuss our learnings and technical details when training and deploying the system to serve billion-scale product retrieval for e-commerce search. In particular, we propose a multilingual graph attention based retrieval network by leveraging recent advances in transformer-based multilingual language models and graph neural network architectures to capture the interactions between search queries and items in e-commerce search. Offline experiments on five countries data show that our algorithm outperforms the state-of-the-art baselines by 35% recall and 25% mAP on average. Moreover, the proposed model shows significant increase of conversion/revenue in online A/B experiments and has been deployed in production for multiple countries.
By frequency-band extracting, we experimentally and theoretically investigate time-delay signature (TDS) suppression and entropy growth enhancement of a chaotic optical-feedback semiconductor laser under different injection currents and feedback stre ngths. The TDS and entropy growth are quantified by the peak value of autocorrelation function and the difference of permutation entropy at the feedback delay time. At the optimal extracting bandwidth, the measured TDS is suppressed up to 96% compared to the original chaos, and the entropy growth is higher than the noise-dominated threshold indicating that the dynamical process is noisy. The effects of extracting bandwidth and radio frequencies on the TDS and entropy growth are also clarified experimentally and theoretically. The experimental results are in good agreements with the theoretical results. The skewness of the laser intensity distribution is effectively improved to 0.001 with the optimal extracting bandwidth. This technique provides a promising tool to extract randomness and prepare desired entropy sources for chaotic secure communication and random number generation.
Generating paragraphs of diverse contents is important in many applications. Existing generation models produce similar contents from homogenized contexts due to the fixed left-to-right sentence order. Our idea is permuting the sentence orders to imp rove the content diversity of multi-sentence paragraph. We propose a novel framework PermGen whose objective is to maximize the expected log-likelihood of output paragraph distributions with respect to all possible sentence orders. PermGen uses hierarchical positional embedding and designs new procedures for training, decoding, and candidate ranking in the sentence-permuted generation. Experiments on three paragraph generation benchmarks demonstrate PermGen generates more diverse outputs with a higher quality than existing models.
Non-invasive cortical neural interfaces have only achieved modest performance in cortical decoding of limb movements and their forces, compared to invasive brain-computer interfaces (BCIs). While non-invasive methodologies are safer, cheaper and vast ly more accessible technologies, signals suffer from either poor resolution in the space domain (EEG) or the temporal domain (BOLD signal of functional Near Infrared Spectroscopy, fNIRS). The non-invasive BCI decoding of bimanual force generation and the continuous force signal has not been realised before and so we introduce an isometric grip force tracking task to evaluate the decoding. We find that combining EEG and fNIRS using deep neural networks works better than linear models to decode continuous grip force modulations produced by the left and the right hand. Our multi-modal deep learning decoder achieves 55.2 FVAF[%] in force reconstruction and improves the decoding performance by at least 15% over each individual modality. Our results show a way to achieve continuous hand force decoding using cortical signals obtained with non-invasive mobile brain imaging has immediate impact for rehabilitation, restoration and consumer applications.
Introduces HIVE-4-MAT - Helping Interdisciplinary Vocabulary Engineering for Materials Science, an automatic linked data ontology application. Covers contextual background for materials science, shared ontology infrastructures, and reviews the knowle dge extraction and indexing process. HIVE-4-MATs vocabulary browsing, term search and selection, and knowledge extraction and indexing are reviewed, and plans to integrate named entity recognition. Conclusion highlights next steps with relation extraction to support better ontologies.
350 - Tong Zhao , Bo Ni , Wenhao Yu 2020
The proliferation of web platforms has created incentives for online abuse. Many graph-based anomaly detection techniques are proposed to identify the suspicious accounts and behaviors. However, most of them detect the anomalies once the users have p erformed many such behaviors. Their performance is substantially hindered when the users observed data is limited at an early stage, which needs to be improved to minimize financial loss. In this work, we propose Eland, a novel framework that uses action sequence augmentation for early anomaly detection. Eland utilizes a sequence predictor to predict next actions of every user and exploits the mutual enhancement between action sequence augmentation and user-action graph anomaly detection. Experiments on three real-world datasets show that Eland improves the performance of a variety of graph-based anomaly detection methods. With Eland, anomaly detection performance at an earlier stage is better than non-augmented methods that need significantly more observed data by up to 15% on the Area under the ROC curve.
240 - Yihao Hu , Tong Zhao , Zhiliang Xu 2020
Partial differential equations (PDEs) play a crucial role in studying a vast number of problems in science and engineering. Numerically solving nonlinear and/or high-dimensional PDEs is often a challenging task. Inspired by the traditional finite dif ference and finite elements methods and emerging advancements in machine learning, we propose a sequence deep learning framework called Neural-PDE, which allows to automatically learn governing rules of any time-dependent PDE system from existing data by using a bidirectional LSTM encoder, and predict the next n time steps data. One critical feature of our proposed framework is that the Neural-PDE is able to simultaneously learn and simulate the multiscale variables.We test the Neural-PDE by a range of examples from one-dimensional PDEs to a high-dimensional and nonlinear complex fluids model. The results show that the Neural-PDE is capable of learning the initial conditions, boundary conditions and differential operators without the knowledge of the specific form of a PDE system.In our experiments the Neural-PDE can efficiently extract the dynamics within 20 epochs training, and produces accurate predictions. Furthermore, unlike the traditional machine learning approaches in learning PDE such as CNN and MLP which require vast parameters for model precision, Neural-PDE shares parameters across all time steps, thus considerably reduces the computational complexity and leads to a fast learning algorithm.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا