ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years worth of science data at initial design sensitivities was completed. Upgrades to the init ial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO600 and KAGRA.
This letter reports the results of a search for a stochastic background of gravitational waves (GW) at 100 MHz by laser interferometry. We have developed a GW detector, which is a pair of 75-cm baseline synchronous recycling (resonant recycling) inte rferometers. Each interferometer has a strain sensitivity of ~ 10^{-16} Hz^{-1/2} at 100 MHz. By cross-correlating the outputs of the two interferometers within 1000 seconds, we found h_{100}^2 Omega_{gw} < 6 times 10^{25} to be an upper limit on the energy density spectrum of the GW background in a 2-kHz bandwidth around 100 MHz, where a flat spectrum is assumed.
Recently, observational searches for gravitational wave background (GWB) have developed and given direct and indirect constraints on the energy density of GWB in a broad range of frequencies. These constraints have already rejected some theoretical m odels of large GWB spectra. However, at 100 MHz, there is no strict upper limit from direct observation, though the indirect limit by He4 abundance due to big-bang nucleosynthesis exists. In this paper, we propose an experiment with laser interferometers searching GWB at 100 MHz. We considered three detector designs and evaluated the GW response functions of a single detector. As a result, we found that, at 100 MHz, the most sensitive detector is the design, a so-called synchronous recycling interferometer, which has better sensitivity than an ordinary Fabry-Perot Michelson interferometer by a factor of 3.3 at 100 MHz. We also give the best sensitivity achievable at 100 MHz with realistic experimental parameters.
Recently, observational searches for gravitational wave background (GWB) have been developed and given constraints on the energy density of GWB in a broad range of frequencies. These constraints have already resulted in the rejection of some theoreti cal models of relatively large GWB spectra. However, at 100 MHz, there is no strict upper limit from direct observation, though an indirect limit exists due to He4 abundance due to big-bang nucleosynthesis. In our previous paper, we investigated the detector designs that can effectively respond to GW at high frequencies, where the wavelength of GW is comparable to the size of a detector, and found that the configuration, a so-called synchronous-recycling interferometer is best at these sensitivity. In this paper, we investigated the optimal location of two synchronous-recycling interferometers and derived their cross-correlation sensitivity to GWB. We found that the sensitivity is nearly optimized and hardly changed if two coaligned detectors are located within a range 0.2 m, and that the sensitivity achievable in an experiment is far below compared with the constraint previously obtained in experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا