ترغب بنشر مسار تعليمي؟ اضغط هنا

CIZA J2242.8+5301 ($z = 0.188$, nicknamed Sausage) is an extremely massive ($M_{200}sim 2.0 times 10^{15}M_odot$ ), merging cluster with shock waves towards its outskirts, which was found to host numerous emission-line galaxies. We performed extremel y deep Westerbork Synthesis Radio Telescope HI observations of the Sausage cluster to investigate the effect of the merger and the shocks on the gas reservoirs fuelling present and future star formation (SF) in cluster members. By using spectral stacking, we find that the emission-line galaxies in the Sausage cluster have, on average, as much HI gas as field galaxies (when accounting for the fact cluster galaxies are more massive than the field galaxies), contrary to previous studies. Since the cluster galaxies are more massive than the field spirals, they may have been able to retain their gas during the cluster merger. The large HI reservoirs are expected to be consumed within $sim0.75-1.0$ Gyr by the vigorous SF and AGN activity and/or driven out by the out-flows we observe. We find that the star-formation rate in a large fraction of H$alpha$ emission-line cluster galaxies correlates well with the radio broad band emission, tracing supernova remnant emission. This suggests that the cluster galaxies, all located in post-shock regions, may have been undergoing sustained SFR for at least 100 Myr. This fully supports the interpretation proposed by Stroe et al. (2015) and Sobral et al. (2015) that gas-rich cluster galaxies have been triggered to form stars by the passage of the shock.
The Square Kilometre Array (SKA) will be a formidable instrument for the detailed study of neutral hydrogen (HI) in external galaxies and in our own Galaxy and Local Group. The sensitivity of the SKA, its wide receiver bands, and the relative freedom from radio frequency interference at the SKA sites will allow the imaging of substantial number of high-redshift galaxies in HI for the first time. It will also allow imaging of galaxies throughout the Local Volume at resolutions of <100 pc and detailed investigations of galaxy disks and the transition between disks, halos and the intergalactic medium (IGM) in the Milky Way and external galaxies. Together with deep optical and millimetre/sub-mm imaging, this will have a profound effect on our understanding of the formation, growth and subsequent evolution of galaxies in different environments. This paper provides an introductory text to a series of nine science papers describing the impact of the SKA in the field of HI and galaxy evolution. We propose a nested set of surveys with phase 1 of the SKA which will help tackle much of the exciting science described. Longer commensal surveys are discussed, including an ultra-deep survey which should permit the detection of galaxies at z=2, when the Universe was a quarter of its current age. The full SKA will allow more detailed imaging of even more distant galaxies, and allow cosmological and evolutionary parameters to be measured with exquisite precision.
30 - Tom Oosterloo 2010
We describe a Phased Array Feed (PAF) system, called Apertif, which will be installed in the Westerbork Synthesis Radio Telescope (WSRT). The aim of Apertif is, at frequencies from 1.0 to 1.7 GHz, to increase the instantaneous field of view of the WS RT 8 deg^2 and its observing bandwidth to 300 MHz with high spectral resolution. This system will turn the WSRT into an effective survey telescope with scientific applications ranging from deep surveys of the northern sky of HI and OH emission and polarised continuum to efficient searches for pulsars and transients. We present results obtained with a prototype PAF installed in one of the WSRT dishes. These results demonstrate that at decimetre wavelengths PAFs have excellent performance and that even for a single beam on the sky they outperform single feed radio dishes. PAFs turn radio telescopes into very effective survey instruments. Apertif is now fully funded and the community is invited to express their interest in using Apertif (http://www.astron.nl/radio-observatory/call-expressions-interest-apertif-surveys )
We present an analysis of deep WSRT observations of the HI in 33 nearby early-type galaxies selected from a sample studied earlier at optical wavelengths with the SAURON integral-field spectrograph. The sample covers both field environments and the V irgo cluster. Our analysis shows that gas accretion plays a role in the evolution of field early-type galaxies, but less so for those in clusters. For detection limits of a few times 10^6 Msun, HI is detected in about 2/3 of the field galaxies, while <10% of the Virgo objects are detected. In about half of the detections, the HI forms a regularly rotating disc or ring. All HI discs have counterparts of ionised gas and inner HI discs are also detected in molecular gas. The cold ISM is dominated by molecular gas (M_H2/M_HI ~ 10). We conclude that accretion of HI is common for field early-type galaxies, but the amount of material involved is usually small. Cluster galaxies appear not to accrete HI. The few galaxies with a significant young sub-population all have inner gas discs, but for the remaining galaxies there is no trend between stellar population and HI. Some early-type galaxies are very gas rich, but only have an old population. The stellar populations of field galaxies are typically younger than those in Virgo. This is likely related to differences in accretion history. In about 50% of the galaxies we detect a central continuum source. In many objects this emission is from a low-luminosity AGN, in some it is consistent with the observed star formation. Galaxies with HI in the central regions are more likely detected in continuum. This is due to a higher probability for star formation to occur in such galaxies and not to HI-related AGN fuelling. (Abridged)
47 - George Heald 2007
In recent years, it has become clear that large quantities of gas reside in the halos of many spiral galaxies. Whether the presence of this gas is ultimately a consequence of star formation activity in the disk, or accretion from outside of the galax y, is not yet understood. We present new, deep HI observations of NGC 4395 as part of a continuing observational program to investigate this issue. We have detected a number of gas clouds with masses and sizes similar to Milky Way HVCs. Some of these are in regions without currently ongoing star formation, possibly indicating ongoing gas accretion.
We present Giant Meterwave Radio Telescope (GMRT) and Westerbork ynthesis Radio Telescope (WSRT) observations of the recently discovered Local Group dwarf galaxy, Leo T. The peak HI column density is measured to be 7x10^20 cm^-2, and the total HI mas s is 2.8Xx10^5 Msun, based on a distance of 420 kpc. Leo T has both cold (~ 500 K) and warm (~ 6000 K) HI at its core, with a global velocity dispersion of 6.9 km/s, from which we derive a dynamical mass within the HI radius of 3.3x10^6 Msun, and a mass-to-light ratio of greater than 50. We calculate the Jeans mass from the radial profiles of the HI column density and velocity dispersion, and predict that the gas should be globally stable against star formation. This finding is inconsistent with the half light radius of Leo T, which extends to 170 pc, and indicates that local conditions must determine where star formation takes place. Leo T is not only the lowest luminosity galaxy with on-going star formation discovered to date, it is also the most dark matter dominated, gas-rich dwarf in the Local Group.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا