ترغب بنشر مسار تعليمي؟ اضغط هنا

The massive cluster MACSJ1149.5+2223(z=0.544) displays five very large lensed images of a well resolved spiral galaxy at $z_{rm spect}=1.491$. It is within one of these images that the first example of a multiply-lensed supernova has been detected re cently as part of the Grism Lens-Amplified Survey from Space. The depth of this data also reveals many HII regions within the lensed spiral galaxy which we identify between the five counter-images. Here we expand the capability of our free-form method to incorporate these HII regions locally, with other reliable lensed galaxies added for a global solution. This improved accuracy allows us to estimate when the Refsdal supernova will appear within the other lensed images of the spiral galaxy to an accuracy of $sim$ 7%. We predict this supernova will reappear in one of the counter-images (RA=11:49:36.025, DEC=+22:23:48.11, J2000) and on November 1$^{st}$ 2015 (with an estimated error of $pm$ 25 days) it will be at the same phase as it was when it was originally discovered, offering a unique opportunity to study the early phases of this supernova and to examine the consistency of the mass model and the cosmological model that have an impact on the time delay prediction.
We examine the latest data on the cluster MACSJ0717.5+3745 from the Hubble Frontier Fields campaign. The critically lensed area is the largest known of any lens and very irregular making it a challenge for parametric modelling. Using our Free-Form me thod we obtain an accurate solution, identify here many new sets of multiple images, doubling the number of constraints and improving the reconstruction of the dark matter distribution. Our reconstructed mass map shows several distinct central substructures with shallow density profiles, clarifying earlier work and defining well the relation between the dark matter distribution and the luminous and X-ray peaks within the critically lensed region. Using our free-form method, we are able to meaningfully subtract the mass contribution from cluster members to the deflection field to trace the smoothly distributed cluster dark matter distribution. We find 4 distinct concentrations, 3 of which are coincident with the luminous matter. The fourth peak has a significant offset from both the closest luminous and X-ray peaks. These findings, together with dynamical data from the motions of galaxies and gas will be important for uncovering the potentially important implications of this extremely massive and intriguing system.
A clean measurement of the evolution of the galaxy cluster mass function can significantly improve our understanding of cosmology from the rapid growth of cluster masses below z < 0.5. Here we examine the consistency of cluster catalogues selected fr om the SDSS by applying two independent gravity-based methods using all available spectroscopic redshifts from the DR10 release. First, we detect a gravitational redshift related signal for 20,119 and 13,128 clusters with spectroscopic redshifts contained in the GMBCG and redMaPPer catalogues, respectively, at a level of $sim - 10$ km s$^{-1}$. This we show is consistent with the magnitude expected using the richness-mass relations provided by the literature and after applying recently clarified relativistic and flux bias corrections. This signal is also consistent with the richest clusters in the larger catalogue of Wen et al. (2012), corresponding to $M_{200m} gtrsim 2 times 10^{14},mathrm{M}_odot,h^{-1}$, however we find no significant detection of gravitational redshift signal for less riched clusters, which may be related to bulk motions from substructure and spurious cluster detections. Second, we find all three catalogues generate mass-dependent levels of lensing magnification bias, which enhances the mean redshift of flux-selected background galaxies from the BOSS survey. The magnitude of this lensing effect is generally consistent with the corresponding richness-mass relations advocated for the surveys. We conclude that all catalogues comprise a high proportion of reliable clusters, and that the GMBCG and redMaPPer cluster finder algorithms favor more relaxed clusters with a meaningful gravitational redshift signal, as anticipated by the red-sequence colour selection of the GMBCG and redMaPPer samples.
The conventional cold, particle interpretation of dark matter (CDM) still lacks laboratory support and struggles with the basic properties of common dwarf galaxies, which have surprisingly uniform central masses and shallow density profiles. In contr ast, galaxies predicted by CDM extend to much lower masses, with steeper, singular profiles. This tension motivates cold, wavelike dark matter ($psi$DM) composed of a non-relativistic Bose-Einstein condensate, so the uncertainty principle counters gravity below a Jeans scale. Here we achieve the first cosmological simulations of this quantum state at unprecedentedly high resolution capable of resolving dwarf galaxies, with only one free parameter, $bf{m_B}$, the boson mass. We demonstrate the large scale structure of this $psi$DM simulation is indistinguishable from CDM, as desired, but differs radically inside galaxies. Connected filaments and collapsed haloes form a large interference network, with gravitationally self-bound solitonic cores inside every galaxy surrounded by extended haloes of fluctuating density granules. These results allow us to determine $bf{m_B=(8.1^{+1.6}_{-1.7})times 10^{-23}~eV}$ using stellar phase-space distributions in dwarf spheroidal galaxies. Denser, more massive solitons are predicted for Milky Way sized galaxies, providing a substantial seed to help explain early spheroid formation. Suppression of small structures means the onset of galaxy formation for $psi$DM is substantially delayed relative to CDM, appearing at $bf{zlesssim 13}$ in our simulations.
Hubble Frontier Fields (HFF) imaging of the most powerful lensing clusters provides access to the most magnified distant galaxies. The challenge is to construct lens models capable of describing these complex massive, merging clusters so that individ ual lensed systems can be reliably identified and their intrinsic properties accurately derived. We apply the free-form lensing method (WSLAP+) to A2744, providing a model independent map of the cluster mass, magnification, and geometric distance estimates to multiply-lensed sources. We solve simultaneously for a smooth cluster component on a pixel grid, together with local deflections by the cluster member galaxies. Combining model prediction with photometric redshift measurements, we correct and complete several systems recently claimed, and identify 4 new systems - totalling 65 images of 21 systems spanning a redshift range of 1.4<z<9.8. The reconstructed mass shows small enhancements in the directions where significant amounts of hot plasma can be seen in X-ray. We compare photometric redshifts with geometric redshifts, finding a high level of self-consistency. We find excellent agreement between predicted and observed fluxes - with a best-fit slope of 0.999+-0.013 and an RMS of ~0.25 mag, demonstrating that our magnification correction of the lensed background galaxies is very reliable. Intriguingly, few multiply-lensed galaxies are detected beyond z~7.0, despite the high magnification and the limiting redshift of z~11.5 permitted by the HFF filters. With the additional HFF clusters we can better examine the plausibility of any pronounced high-z deficit, with potentially important implications for the reionization epoch and the nature of dark matter.
The distinctive cometary X-ray morphology of the recently discovered massive galaxy cluster El Gordo (ACT-CT J0102-4915; z=0.87) indicates that an unusually high-speed collision is ongoing between two massive galaxy clusters. A bright X-ray bullet le ads a twin-tailed wake, with the SZ centroid at the end of the Northern tail. We show how the physical properties of this system can be determined using our FLASH-based, N-body/hydrodynamic model, constrained by detailed X-ray, Sunyaev-Zeldovich (SZ), and Hubble lensing and dynamical data. The X-ray morphology and the location of the two Dark Matter components and the SZ peak are accurately described by a simple binary collision viewed about 480 million years after the first core passage. We derive an impact parameter of ~300 kpc, and a relative initial infall velocity of ~2250 km/sec when separated by the sum of the two virial radii assuming an initial total mass of 2.15x10^(15) Msun and a mass ratio of 1.9. Our model demonstrates that tidally stretched gas accounts for the Northern X-ray tail along the collision axis between the mass peaks, and that the Southern tail lies off axis, comprising compressed and shock heated gas generated as the massive component plunges through the main cluster. The challenge for LCDM will be to find out if this physically extreme event can be plausibly accommodated when combined with the similarly massive, high infall velocity case of the Bullet cluster and other such cases being uncovered in the new SZ based surveys.
Since the discovery of the bullet cluster several similar cases have been uncovered suggesting relative velocities well beyond the tail of high speed collisions predicted by the concordance LCDM model. However, quantifying such post-merger events wit h hydrodynamical models requires a wide coverage of possible initial conditions. Here we show that it is simpler to interpret pre-merger cases, such as A1750, where the gas between the colliding clusters is modestly affected, so that the initial conditions are clear. We analyze publicly available Chandra data confirming a significant increase in the projected X-ray temperature between the two cluster centers in A1750 consistent with our expectations for a merging cluster. We model this system with a self-consistent hydrodynamical simulation of dark matter and gas using the FLASH code. Our simulations reproduce well the X-ray data, and the measured redshift difference between the two clusters in the phase before the first core passage viewed at an intermediate projection angle. The deprojected initial relative velocity derived using our model is 1460 km/sec which is considerably higher than the predicted mean impact velocity for simulated massive haloes derived by recent LCDM cosmological simulations, but it is within the allowed range. Our simulations demonstrate that such systems can be identified using a multi-wavelength approach and numerical simulations, for which the statistical distribution of relative impact velocities may provide a definitive examination of a broad range of dark matter scenarios.
119 - Sandor M. Molnar 2013
We show that the fast moving component of the bullet cluster (1E0657-56) can induce potentially resolvable redshift differences between multiply-lensed images of background galaxies. The moving cluster effect can be expressed as the scalar product of the lensing deflection angle with the tangential velocity of the mass components, and it is maximal for clusters colliding in the plane of the sky with velocities boosted by their mutual gravity. The bullet cluster is likely to be the best candidate for the first measurement of this effect due to the large collision velocity and because the lensing deflection and the cluster fields can be calculated in advance. We derive the deflection field using multiply-lensed background galaxies detected with the Hubble Space Telescope. The velocity field is modeled using self-consistent N-body/hydrodynamical simulations constrained by the observed X-ray and gravitational lensing features of this system. We predict that the triply-lensed images of systems G and H straddling the critical curve of the bullet component will show the largest frequency shifts up to ~0.5 km/sec. This is within the range of the Atacama Large Millimeter/sub-millimeter Array (ALMA) for molecular emission, and is near the resolution limit of the new generation high-throughput optical-IR spectrographs. A detection of this effect measures the tangential motion of the subclusters directly, thereby clarifying the tension with LCDM, which is inferred from gas motion less directly. This method may be extended to smaller redshift differences using the Ly-alpha forest towards QSOs lensed by more typical clusters of galaxies. More generally, the tangential component of the peculiar velocities of clusters derived by our method complements the radial component determined by the kinematic SZ effect, providing a full 3-dimensional description of velocities.
In the strong lensing regime non-parametric lens models struggle to achieve sufficient angular resolution for a meaningful derivation of the central cluster mass distribution. The problem lies mainly with cluster members which perturb lensed images a nd generate additional images, requiring high resolution modeling, even though we mainly wish to understand the relatively smooth cluster component. The required resolution is not achievable because the separation between lensed images is several times larger than the deflection angles by member galaxies, even for the deepest data. Here we bypass this limitation by incorporating a simple physical prior for member galaxies, using their observed positions and their luminosity scaled masses. This galaxy contribution is added to a relatively coarse Gaussian pixel grid for modeling the cluster mass distribution, extending our established WSLAP code (Diego et al. 2007). We test this new code with a simulation based on A1689, using the pixels belonging to multiply-lensed images and the observed member galaxies. Dealing with the cluster members this way leads to convergent solutions, without resorting to regularization, reproducing well the input cluster and substructures. We highlight the ability of this method to recover dark sub-components of the cluster, unrelated to member galaxies. Such anomalies can provide clues to the nature of invisible dark matter, but are hard to discover using parametrized models where substructures are defined by the visible data. With our increased resolution and stability we show, for the first time, that non-parametric models can be made sufficiently precise to locate multiply-lensed systems, thereby achieving fully self-consistent solutions without reliance on input systems from less objective means.
We report the first detection of a redshift-depth enhancement of background galaxies magnified by foreground clusters. Using 300,000 BOSS-Survey galaxies with accurate spectroscopic redshifts, we measure their mean redshift depth behind four large sa mples of optically selected clusters from the SDSS surveys, totalling 5,000-15,000 clusters. A clear trend of increasing mean redshift towards the cluster centers is found, averaged over each of the four cluster samples. In addition we find similar but noisier behaviour for an independent X-ray sample of 158 clusters lying in the foreground of the current BOSS sky area. By adopting the mass-richness relationships appropriate for each survey we compare our results with theoretical predictions for each of the four SDSS cluster catalogs. The radial form of this redshift enhancement is well fitted by a richness-to-mass weighted composite Navarro-Frenk-White profile with an effective mass ranging between M_200 ~ 1.4-1.8 10^14 M_sun for the optically detected cluster samples, and M_200 ~ 5.0 10^14 M_sun for the X-ray sample. This lensing detection helps to establish the credibility of these SDSS cluster surveys, and provides a normalization for their respective mass-richness relations. In the context of the upcoming bigBOSS, Subaru-PFS, and EUCLID-NISP spectroscopic surveys, this method represents an independent means of deriving the masses of cluster samples for examining the cosmological evolution, and provides a relatively clean consistency check of weak-lensing measurements, free from the systematic limitations of shear calibration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا