ترغب بنشر مسار تعليمي؟ اضغط هنا

The Pre-merger Impact Velocity of the Binary Cluster A1750 from X-ray, Lensing and Hydrodynamical Simulations

42   0   0.0 ( 0 )
 نشر من قبل Sandor Molnar M
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the discovery of the bullet cluster several similar cases have been uncovered suggesting relative velocities well beyond the tail of high speed collisions predicted by the concordance LCDM model. However, quantifying such post-merger events with hydrodynamical models requires a wide coverage of possible initial conditions. Here we show that it is simpler to interpret pre-merger cases, such as A1750, where the gas between the colliding clusters is modestly affected, so that the initial conditions are clear. We analyze publicly available Chandra data confirming a significant increase in the projected X-ray temperature between the two cluster centers in A1750 consistent with our expectations for a merging cluster. We model this system with a self-consistent hydrodynamical simulation of dark matter and gas using the FLASH code. Our simulations reproduce well the X-ray data, and the measured redshift difference between the two clusters in the phase before the first core passage viewed at an intermediate projection angle. The deprojected initial relative velocity derived using our model is 1460 km/sec which is considerably higher than the predicted mean impact velocity for simulated massive haloes derived by recent LCDM cosmological simulations, but it is within the allowed range. Our simulations demonstrate that such systems can be identified using a multi-wavelength approach and numerical simulations, for which the statistical distribution of relative impact velocities may provide a definitive examination of a broad range of dark matter scenarios.

قيم البحث

اقرأ أيضاً

We present results from recent Suzaku and Chandra X-ray, and MMT optical observations of the strongly merging double cluster A1750 out to its virial radius, both along and perpendicular to a putative large-scale structure filament. Some previous stud ies of individual clusters have found evidence for ICM entropy profiles that flatten at large cluster radii, as compared with the self-similar prediction based on purely gravitational models of hierarchical cluster formation, and gas fractions that rise above the mean cosmic value. Weakening accretion shocks and the presence of unresolved cool gas clumps, both of which are expected to correlate with large scale structure filaments, have been invoked to explain these results. In the outskirts of A1750, we find entropy profiles that are consistent with self-similar expectations, and gas fractions that are consistent with the mean cosmic value, both along and perpendicular to the putative large scale filament. Thus, we find no evidence for gas clumping in the outskirts of A1750, in either direction. This may indicate that gas clumping is less common in lower temperature (kT~4keV), less massive systems, consistent with some (but not all) previous studies of low mass clusters and groups. Cluster mass may therefore play a more important role in gas clumping than dynamical state. Finally, we find evidence for diffuse, cool (<1 keV) gas at large cluster radii (R200) along the filament, which is consistent with the expected properties of the denser, hotter phase of the WHIM.
Forthcoming experiments will enable us to determine tomographic shear spectra at a high precision level. Most predictions about them have until now been biased on algorithms yielding the expected linear and non-linear spectrum of density fluctuations . Even when simulations have been used, so-called Halofit (Smith et al 2003) predictions on fairly large scales have been needed. We wish to go beyond this limitation. We perform N-body and hydrodynamical simulations within a sufficiently large cosmological volume to allow a direct connection between simulations and linear spectra. While covering large length-scales, the simulation resolution is good enough to allow us to explore the high-l harmonics of the cosmic shear (up to l ~ 50000), well into the domain where baryon physics becomes important. We then compare shear spectra in the absence and in presence of various kinds of baryon physics, such as radiative cooling, star formation, and supernova feedback in the form of galactic winds. We distinguish several typical properties of matter fluctuation spectra in the different simulations and test their impact on shear spectra. We compare our outputs with those obtainable using approximate expressions for non--linear spectra, and identify substantial discrepancies even between our results and those of purely N-body results. Our simulations and the treatment of their outputs however enable us, for the first time, to obtain shear results taht are fully independent of any approximate expression, also in the high-l range, where we need to incorporate a non-linear power spectrum of density perturbations, and the effects of baryon physics. This will allow us to fully exploit the cosmological information contained in future high--sensitivity cosmic shear surveys, exploring the physics of cosmic shears via weak lensing measurements.
Determination of cluster masses is a fundamental tool for cosmology. Comparing mass estimates obtained by different probes allows to understand possible systematic uncertainties. The cluster Abell 315 is an interesting test case, since it has been cl aimed to be underluminous in X-ray for its mass (determined via kinematics and weak lensing). We have undertaken new spectroscopic observations with the aim of improving the cluster mass estimate, using the distribution of galaxies in projected phase space. We identified cluster members in our new spectroscopic sample. We estimated the cluster mass from the projected phase-space distribution of cluster members using the MAMPOSSt method. In doing this estimate we took into account the presence of substructures that we were able to identify. We identify several cluster substructures. The main two have an overlapping spatial distribution, suggesting a (past or ongoing) collision along the line-of-sight. After accounting for the presence of substructures, the mass estimate of Abell 315 from kinematics is reduced by a factor 4, down to M200=0.8 (-0.4,+0.6) x 10^14 Msun. We also find evidence that the cluster mass concentration is unusually low, c200=r200/r-2 <~ 1. Using our new estimate of c200 we revise the weak lensing mass estimate down to M200=1.8 (-0.9,+1.7) x 10^14 Msun. Our new mass estimates are in agreement with that derived from the cluster X-ray luminosity via a scaling relation, M200=0.9+-0.2 x 10^14 Msun. Abell 315 no longer belongs to the class of X-ray underluminous clusters. Its mass estimate was inflated by the presence of an undetected subcluster in collision with the main cluster. Whether the presence of undetected line-of-sight structures can be a general explanation for all X-ray underluminous clusters remains to be explored using a statistically significant sample.
We present an updated model for the average cluster pressure profile, adjusted for hydrostatic mass bias by combining results from X-ray observations with cosmological simulations. Our model estimates this bias by fitting a power-law to the relation between the true halo mass and X-ray cluster mass in hydrodynamic simulations (IllustrisTNG, BAHAMAS, and MACSIS). As an example application, we consider the REXCESS X-ray cluster sample and the Universal Pressure Profile (UPP) derived from scaled and stacked pressure profiles. We find adjusted masses, $M_mathrm{500c},$ that are $lesssim$15% higher and scaled pressures $P/P_mathrm{500c}$ that have $lesssim$35% lower normalization than previously inferred. Our Debiased Pressure Profile (DPP) is well-fit by a Generalized Navarro-Frenk-White (GNFW) function, with parameters $[P_0,c_{500},alpha,beta,gamma]=[5.048,1.217,1.192,5.490,0.433]$ and does not require a mass-dependent correction term. When the DPP is used to model the Sunyaev-Zeldovich (SZ) effect, we find that the integrated Compton $Y-M$ relation has only minor deviations from self-similar scaling. The thermal SZ angular power spectrum is lower in amplitude by approximately 30%, assuming nominal cosmological parameters (e.g. $Omega_text{m}=0.3$, $sigma_8 = 0.8$), and is broadly consistent with recent Planck results without requiring additional bias corrections.
We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and $Y_{X}$. Three sets of simulations ar e performed with an improved version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following: non-radiative gas, star formation and stellar feedback, and the addition of feedback by active galactic nuclei (AGN). We select clusters with $M_{500} > 10^{14} M_{odot} E(z)^{-1}$, mimicking the typical selection of Sunyaev-Zeldovich samples. This permits to have a mass range large enough to enable robust fitting of the relations even at $z sim 2$. The results of the analysis show a general agreement with observations. The values of the slope of the mass-gas mass and mass-temperature relations at $z=2$ are 10 per cent lower with respect to $z=0$ due to the applied mass selection, in the former case, and to the effect of early merger in the latter. We investigate the impact of the slope variation on the study of the evolution of the normalization. We conclude that cosmological studies through scaling relations should be limited to the redshift range $z=0-1$, where we find that the slope, the scatter, and the covariance matrix of the relations are stable. The scaling between mass and $Y_X$ is confirmed to be the most robust relation, being almost independent of the gas physics. At higher redshifts, the scaling relations are sensitive to the inclusion of AGNs which influences low-mass systems. The detailed study of these objects will be crucial to evaluate the AGN effect on the ICM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا