ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the dark matter and the cosmological baryon asymmetry in a simple theory where baryon (B) and lepton (L) number are local gauge symmetries that are spontaneously broken. In this model, the cold dark matter candidate is the lightest new field with baryon number and its stability is an automatic consequence of the gauge symmetry. Dark matter annihilation is either through a leptophobic gauge boson whose mass must be below a TeV or through the Higgs boson. Since the mass of the leptophobic gauge boson has to be below the TeV scale one finds that in the first scenario there is a lower bound on the elastic cross section of about 5x10^{-46} cm^2. Even though baryon number is gauged and not spontaneously broken until the weak scale, a cosmologically acceptable baryon excess is possible. There is tension between achieving both the measured baryon excess and the dark matter density.
We examine cosmological perturbations in a dynamical theory of inflation in which an Abelian gauge field couples directly to the inflaton, breaking conformal invariance. When the coupling between the gauge field and the inflaton takes a specific form , inflation becomes anisotropic and anisotropy can persist throughout inflation, avoiding Walds no-hair theorem. After discussing scenarios in which anisotropy can persist during inflation, we calculate the dominant effects of a small persistent anisotropy on the primordial gravitational wave and curvature perturbation power spectra using the in-in formalism of perturbation theory. We find that the primordial power spectra of cosmological perturbations gain significant direction dependence and that the fractional direction dependence of the tensor power spectrum is suppressed in comparison to that of the scalar power spectrum.
We investigate the stability of theories in which Lorentz invariance is spontaneously broken by fixed-norm vector aether fields. Models with generic kinetic terms are plagued either by ghosts or by tachyons, and are therefore physically unacceptable. There are precisely three kinetic terms that are not manifestly unstable: a sigma model $(partial_mu A_ u)2$, the Maxwell Lagrangian $F_{mu u}F^{mu u}$, and a scalar Lagrangian $(partial_mu A^mu)2$. The timelike sigma-model case is well-defined and stable when the vector norm is fixed by a constraint; however, when it is determined by minimizing a potential there is necessarily a tachyonic ghost, and therefore an instability. In the Maxwell and scalar cases, the Hamiltonian is unbounded below, but at the level of perturbation theory there are fewer degrees of freedom and the models are stable. However, in these two theories there are obstacles to smooth evolution for certain choices of initial data.
Theories of low-energy Lorentz violation by a fixed-norm aether vector field with two-derivative kinetic terms have a globally bounded Hamiltonian and are perturbatively stable only if the vector is timelike and the kinetic term in the action takes t he form of a sigma model. Here we investigate the phenomenological properties of this theory. We first consider the propagation of modes in the presence of gravity, and show that there is a unique choice of curvature coupling that leads to a theory without superluminal modes. Experimental constraints on this theory come from a number of sources, and we examine bounds in a two-dimensional parameter space. We then consider the cosmological evolution of the aether, arguing that the vector will naturally evolve to be orthogonal to constant-density hypersurfaces in a Friedmann-Robertson-Walker cosmology. Finally, we examine cosmological evolution in the presence of an extra compact dimension of space, concluding that a vector can maintain a constant projection along the extra dimension in an expanding universe only when the expansion is exponential.
We study the classical stability of an anisotropic space-time seeded by a spacelike, fixed norm, dynamical vector field in a vacuum-energy-dominated inflationary era. It serves as a model for breaking isotropy during the inflationary era. We find tha t, for a range of parameters, the linear differential equations for small perturbations about the background do not have a growing mode. We also examine the energy of fluctuations about this background in flat-space. If the kinetic terms for the vector field do not take the form of a field strength tensor squared then there is a negative energy mode and the background is unstable. For the case where the kinetic term is of the form of a field strength tensor squared we show that perturbations about the background have positive energy at lowest order.
We derive the metric for a Bianchi type I space-time with energy density that is dominated by that of a perfect fluid with equation of state $p=wrho$ and whose anisotropy is seeded by a fixed norm spacelike vector field. We solve for the evolution of perturbations about this space-time. In particular, the Jeans instability in an expanding flat Friedmann-Robertson-Walker universe is modified by the presence of the vector field so that energy density perturbations develop direction-dependent growth. We also briefly consider observational limits on the vector field vacuum expectation value, $m$. We find that, if $m$ is constant during recombination and thereafter, $m lesssim 10^{14} GeV$.
Recently an extension of the standard model (the Lee-Wick standard model) based on ideas of Lee and Wick (LW) was introduced. It does not contain quadratic divergences in the Higgs mass and hence solves the hierarchy puzzle. The LW-standard model con tains new heavy LW-resonances at the TeV scale that decay to ordinary particles. In this paper we examine in more detail the flavor structure of the theory. We integrate out the heavy LW-fermions at tree level and find that this induces flavor changing Z boson couplings. However, these flavor changing neutral currents are acceptably small since they are automatically suppressed by small Yukawa couplings. This is the case even though the theory does not satisfy the principle of minimal flavor violation. New couplings of the charged W bosons to quarks and leptons are also induced. We also integrate out the LW-Higgs and examine the four-fermion operators induced.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا