ترغب بنشر مسار تعليمي؟ اضغط هنا

We study Riesz means of eigenvalues of the Heisenberg Laplacian with Dirichlet boundary conditions on a cylinder in dimension three. We obtain an inequality with a sharp leading term and an additional lower order term.
We study Riesz means of the eigenvalues of the Heisenberg Laplacian with Dirichlet boundary conditions on bounded domains. We obtain an inequality with a sharp leading term and an additional lower order term, improving the result of Hanson and Laptev.
In this paper we study the eigenvalue sums of Dirichlet Laplacians on bounded domains. Among our results we establish an improvement of the Li-Yau bound in the presence of a constant magnetic field.
We consider the Dirichlet Laplace operator on open, quasi-bounded domains of infinite volume. For such domains semiclassical spectral estimates based on the phase-space volume - and therefore on the volume of the domain - must fail. Here we present a method how one can nevertheless prove uniform bounds on eigenvalues and eigenvalue means which are sharp in the semiclassical limit. We give examples in horn-shaped regions and so-called spiny urchins. Some results are extended to Schrodinger operators defined on quasi-bounded domains with Dirichlet boundary conditions.
We study the eigenvalues of the Dirichlet Laplace operator on an arbitrary bounded, open set in $R^d$, $d geq 2$. In particular, we derive upper bounds on Riesz means of order $sigma geq 3/2$, that improve the sharp Berezin inequality by a negative s econd term. This remainder term depends on geometric properties of the boundary of the set and reflects the correct order of growth in the semi-classical limit. Under certain geometric conditions these results imply new lower bounds on individual eigenvalues, which improve the Li-Yau inequality.
We derive upper bounds for the trace of the heat kernel $Z(t)$ of the Dirichlet Laplace operator in an open set $Omega subset R^d$, $d geq 2$. In domains of finite volume the result improves an inequality of Kac. Using the same methods we give boun ds on $Z(t)$ in domains of infinite volume. For domains of finite volume the bound on $Z(t)$ decays exponentially as $t$ tends to infinity and it contains the sharp first term and a correction term reflecting the properties of the short time asymptotics of $Z(t)$. To prove the result we employ refined Berezin-Li-Yau inequalities for eigenvalue means.
We improve the Berezin-Li-Yau inequality in dimension two by adding a positive correction term to its right-hand side. It is also shown that the asymptotical behaviour of the correction term is almost optimal. This improves a previous result by Melas.
31 - Timo Weidl 2007
We give an improvement of sharp Berezin type bounds on the Riesz means $sum_k(Lambda-lambda_k)_+^sigma$ of the eigenvalues $lambda_k$ of the Dirichlet Laplacian in a domain if $sigmageq 3/2$. It contains a correction term of the order of the standard second term in the Weyl asymptotics. The result is based on an application of sharp Lieb-Thirring inequalities with operator valued potential to spectral estimates of the Dirichlet Laplacian in domains.
We consider the Dirichlet Laplacian with a constant magnetic field in a two-dimensional domain of finite measure. We determine the sharp constants in semi-classical eigenvalue estimates and show, in particular, that Polyas conjecture is not true in the presence of a magnetic field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا