ﻻ يوجد ملخص باللغة العربية
We derive upper bounds for the trace of the heat kernel $Z(t)$ of the Dirichlet Laplace operator in an open set $Omega subset R^d$, $d geq 2$. In domains of finite volume the result improves an inequality of Kac. Using the same methods we give bounds on $Z(t)$ in domains of infinite volume. For domains of finite volume the bound on $Z(t)$ decays exponentially as $t$ tends to infinity and it contains the sharp first term and a correction term reflecting the properties of the short time asymptotics of $Z(t)$. To prove the result we employ refined Berezin-Li-Yau inequalities for eigenvalue means.
In some previous works, the analytic structure of the spectrum of a quantum graph operator as a function of the vertex conditions and other parameters of the graph was established. However, a specific local coordinate chart on the Grassmanian of all
Multipole matrix elements of Green function of Laplace equation are calculated. The multipole matrix elements of Green function in electrostatics describe potential on a sphere which is produced by a charge distributed on the surface of a different (
The operator associated to the angular part of the Dirac equation in the Kerr-Newman background metric is a block operator matrix with bounded diagonal and unbounded off-diagonal entries. The aim of this paper is to establish a variational principle
We continue the study of the free energy of quantum lattice spin systems where to the local Hamiltonian $H$ an arbitrary mean field term is added, a polynomial function of the arithmetic mean of some local observables $X$ and $Y$ that do not necessar
Motivated by the universal knot polynomials in the gauge Chern-Simons theory, we show that the values of the second Casimir operator on an arbitrary power of Cartan product of $X_2$ and adjoint representations of simple Lie algebras can be represente