ترغب بنشر مسار تعليمي؟ اضغط هنا

We constrain the assembly history of galaxies in the projected central 0.5 Mpc of the Coma cluster by performing structural decomposition on 69 massive (M_star >= 10^9 M_sun) galaxies using high-resolution F814W images from the HST Treasury Survey of Coma. Each galaxy is modeled with up to three Sersic components having a free Sersic index n. After excluding the two cDs in the projected central 0.5 Mpc of Coma, 57% of the galactic stellar mass in the projected central 0.5 Mpc of Coma resides in classical bulges/ellipticals while 43% resides in cold disk-dominated structures. Most of the stellar mass in Coma may have been assembled through major (and possibly minor) mergers. Hubble types are assigned based on the decompositions, and we find a strong morphology-density relation; the ratio of (E+S0):spirals is (91.0%):9.0%. In agreement with earlier work, the size of outer disks in Coma S0s/spirals is smaller compared with lower-density environments captured with SDSS (Data Release 2). Among similar-mass clusters from a hierarchical semi-analytic model, no single cluster can simultaneously match all the global properties of the Coma cluster. The model strongly overpredicts the mass of cold gas and underpredicts the mean fraction of stellar mass locked in hot components over a wide range of galaxy masses. We suggest that these disagreements with the model result from missing cluster physics (e.g., ram-pressure stripping), and certain bulge assembly modes (e.g., mergers of clumps). Overall, our study of Coma underscores that galaxy evolution is not solely a function of stellar mass, but also of environment.
We present the survey design, data reduction, and spectral fitting pipeline for the VIRUS-P Exploration of Nearby Galaxies (VENGA). VENGA is an integral field spectroscopic survey, which maps the disks of 30 nearby spiral galaxies. Targets span a wid e range in Hubble type, star formation activity, morphology, and inclination. The VENGA data-cubes have 5.6 FWHM spatial resolution, ~5A FWHM spectral resolution, sample the 3600A-6800A range, and cover large areas typically sampling galaxies out to ~0.7 R_25. These data-cubes can be used to produce 2D maps of the star formation rate, dust extinction, electron density, stellar population parameters, the kinematics and chemical abundances of both stars and ionized gas, and other physical quantities derived from the fitting of the stellar spectrum and the measurement of nebular emission lines. To exemplify our methods and the quality of the data, we present the VENGA data-cube on the face-on Sc galaxy NGC 628 (a.k.a. M 74). The VENGA observations of NGC 628 are described, as well as the construction of the data-cube, our spectral fitting method, and the fitting of the stellar and ionized gas velocity fields. We also propose a new method to measure the inclination of nearly face-on systems based on the matching of the stellar and gas rotation curves using asymmetric drift corrections. VENGA will measure relevant physical parameters across different environments within these galaxies, allowing a series of studies on star formation, structure assembly, stellar populations, chemical evolution, galactic feedback, nuclear activity, and the properties of the interstellar medium in massive disk galaxies.
42 - Tim Weinzirl 2009
We use the bulge Sersic index n and bulge-to-total ratio (B/T) to explore the fundamental question of how bulges form. We perform 2D bulge-disk-bar decomposition on H-band images of 143 bright, high stellar mass (>1.0e10 solar masses) low-to-moderate ly inclined (i<70 degrees) spirals. Our results are: (1) Our H-band bar fraction (~58%) is consistent with that from ellipse fits. (2) 70% of the stellar mass is in disks, 10% in bars, and 20% in bulges. (3) A large fraction (~69%) of bright spirals have B/T<0.2, and ~76% have low n<2 bulges. These bulges exist in barred and unbarred galaxies across a wide range of Hubble types. (4) About 65% (68%) of bright spirals with n<2 (B/T<0.2) bulges host bars, suggesting a possible link between bars and bulges. (5) We compare the results with predictions from a set of LCDM models. In the models, a high mass spiral can have a bulge with a present-day low B/T<0.2 only if it did not undergo a major merger since z<2. The predicted fraction (~1.6%) of high mass spirals, which have undergone a major merger since z<4 and host a bulge with a present-day low B/T<0.2, is a factor of over thirty smaller than the observed fraction (~66%) of high mass spirals with B/T<0.2. Thus, contrary to common perception, bulges built via major mergers since z<4 seriously fail to account for the bulges present in ~66% of high mass spirals. Most of these present-day low B/T<0.2 bulges are likely to have been built by a combination of minor mergers and/or secular processes since z<4.
111 - Tim Weinzirl 2008
Structural decomposition of galaxies into bulge, disk, and bar components is important to address a number of scientific problems. Measuring bulge, disk, and bar structural parameters will set constraints on the violent and secular processes of galax y assembly and recurrent bar formation and dissolution models. It can also help to quantify the fraction and properties of bulgeless galaxies (those systems having no bulge or only a relatively insignificant disky-pseudobulges), which defy galaxy formation paradigms requiring almost every disk galaxy to have a classical bulge at its core. We demonstrate a proof of concept and show early results of our ongoing three-component bulge-disk-bar decomposition of NIR images for a sample of three complementary samples spanning different epochs and different environments (field and cluster). In contrast to most early studies, which only attempt two-component bulge-disk decomposition, we fit three components using GALFIT: a bulge, a disk, and a bar. We show that it is important to include the bar component, as this can significantly lower the bulge-to-total luminosity ratio (B/T), in many cases by a factor of two or more, thus effectively changing the Hubble type of a galaxy from early to late.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا