ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we consider the design of a multiple-input multiple-output (MIMO) transmitter which simultaneously functions as a MIMO radar and a base station for downlink multiuser communications. In addition to a power constraint, we require the co variance of the transmit waveform be equal to a given optimal covariance for MIMO radar, to guarantee the radar performance. With this constraint, we formulate and solve the signal-to-interference-plus-noise ratio (SINR) balancing problem for multiuser transmit beamforming via convex optimization. Considering that the interference cannot be completely eliminated with this constraint, we introduce dirty paper coding (DPC) to further cancel the interference, and formulate the SINR balancing and sum rate maximization problem in the DPC regime. Although both of the two problems are non-convex, we show that they can be reformulated to convex optimizations via the Lagrange and downlink-uplink duality. In addition, we propose gradient projection based algorithms to solve the equivalent dual problem of SINR balancing, in both transmit beamforming and DPC regimes. The simulation results demonstrate significant performance improvement of DPC over transmit beamforming, and also indicate that the degrees of freedom for the communication transmitter is restricted by the rank of the covariance.
Dual function radar communications (DFRC) systems are attractive technologies for autonomous vehicles, which utilize electromagnetic waves to constantly sense the environment while simultaneously communicating with neighbouring devices. An emerging a pproach to implement DFRC systems is to embed information in radar waveforms via index modulation (IM). Implementation of DFRC schemes in vehicular systems gives rise to strict constraints in terms of cost, power efficiency, and hardware complexity. In this paper, we extend IM-based DFRC systems to utilize sparse arrays and frequency modulated continuous waveforms (FMCWs), which are popular in automotive radar for their simplicity and low hardware complexity. The proposed FMCW-based radar-communications system (FRaC) operates at reduced cost and complexity by transmitting with a reduced number of radio frequency modules, combined with narrowband FMCW signalling. This is achieved via array sparsification in transmission, formulating a virtual multiple-input multiple-output array by combining the signals in one coherent processing interval, in which the narrowband waveforms are transmitted in a randomized manner. Performance analysis and numerical results show that the proposed radar scheme achieves similar resolution performance compared with a wideband radar system operating with a large receive aperture, while requiring less hardware overhead. For the communications subsystem, FRaC achieves higher rates and improved error rates compared to dual-function signalling based on conventional phase modulation.
Learned iterative shrinkage thresholding algorithm (LISTA), which adopts deep learning techniques to learn optimal algorithm parameters from labeled training data, can be successfully applied to small-scale multidimensional harmonic retrieval (MHR) p roblems. However, LISTA computationally demanding for large-scale MHR problems because the matrix size of the learned mutual inhibition matrix exhibits quadratic growth with the signal length. These large matrices consume costly memory/computation resources and require a huge amount of labeled data for training, restricting the applicability of the LISTA method. In this paper, we show that the mutual inhibition matrix of a MHR problem naturally has a Toeplitz structure, which means that the degrees of freedom (DoF) of the matrix can be reduced from a quadratic order to a linear order. By exploiting this characteristic, we propose a structured LISTA-Toeplitz network, which imposes a Toeplitz structure restriction on the mutual inhibition matrices and applies linear convolution instead of the matrix-vector multiplication involved in the traditional LISTA network. Both simulation and field test for air target detection with radar are carried out to validate the performance of the proposed network. For small-scale MHR problems, LISTAToeplitz exhibits close or even better recovery accuracy than traditional LISTA, while the former significantly reduces the network complexity and requires much less training data. For large-scale MHR problems, where LISTA is difficult to implement due to the huge size of the mutual inhibition matrices, our proposed LISTA-Toeplitz still enjoys desirable recovery performance.
FAR has improved anti-jamming performance over traditional pulse-Doppler radars under complex electromagnetic circumstances. To reconstruct the range-Doppler information in FAR, many compressed sensing (CS) methods including standard and block sparse recovery have been applied. In this paper, we study phase transitions of range-Doppler recovery in FAR using CS. In particular, we derive closed-form phase transition curves associated with block sparse recovery and complex Gaussian matrices, based on prior results of standard sparse recovery under real Gaussian matrices. We further approximate the obtained curves with elementary functions of radar and target parameters, facilitating practical applications of these curves. Our results indicate that block sparse recovery outperforms the standard counterpart when targets occupy more than one range cell, which are often referred to as extended targets. Simulations validate the availability of these curves and their approximations in FAR, which benefit the design of the radar parameters.
Pulse Doppler radars suffer from range-Doppler ambiguity that translates into a trade-off between maximal unambiguous range and velocity. Several techniques, like the multiple PRFs (MPRF) method, have been proposed to mitigate this problem. The drawb ack of the MPRF method is that the received samples are not processed jointly, decreasing signal to noise ratio (SNR). To overcome the drawbacks of MPRF, we employ a random pulse phase coding approach to increase the unambiguous range region while preserving the unambiguous Doppler region. Our method encodes each pulse with a random phase, varying from pulse to pulse, and then processes the received samples jointly to resolve the range ambiguity. This technique increases the SNR through joint processing without the parameter matching procedures required in the MPRF method. The recovery algorithm is designed based on orthogonal matching pursuit so that it can be directly applied to either Nyquist or sub-Nyquist samples. The unambiguous delay-Doppler recovery condition is derived with compressed sensing theory in noiseless settings. In particular, an upper bound to the number of targets is given, with respect to the number of samples in each pulse repetition interval and the number of transmit pulses. Simulations show that in both regimes of Nyquist and sub-Nyquist samples our method outperforms the popular MPRF approach in terms of hit rate.
Multistatic radar system (MSRS) is considered an effective scheme to suppress mainlobe jamming, since it has higher spatial resolution enabling jamming cancellation from spatial domain. To develop electronic countermeasures against MSRS, a random arr ay subset selection (RASS)jamming method is proposed in this paper. In the RASS jammer, elements of the array antenna are activated randomly, leading to stable mainlobe and random sidelobes, different from the traditional jammer that applies the complete antenna array enjoying constant mainlobe and sidelobes. We study the covariance matrix of jamming signals received by radars, and derive its rank, revealing that the covariance matrix is of full rank. We also calculate the output jamming to signal and noise ratio (JSNR) after the subspace-based jamming suppression methods used in MSRS under the proposed jamming method, which demonstrates that the full rank property invalidates such suppression methods. Numerical results verify our analytical deduction and exhibit the improved countermeasure performance of our proposed RASS jamming method compared to the traditional one.
Automotive radar is a key component in an ADAS. The increasing number of radars implemented in vehicles makes interference between them a noteworthy issue. One method of interference mitigation is to limit the TBP of radar waveforms. However, the pro blems of how much TBP is necessary and how to optimally utilize the limited TBP have not been addressed. We take CWS as an example and propose a method of designing the radar waveform parameters oriented by the performance of CWS We propose a metric to quantify the CWS performance and study how the radar waveform parameters (bandwidth and duration) influence this metric. Then, the waveform parameters are designed with a limit on the TBP to optimize the system performance. Numerical results show that the proposed design outperforms the state-of-the-art parameter settings in terms of system performance and resource or energy efficiency.
Nowadays, mutual interference among automotive radars has become a problem of wide concern. In this paper, a decentralized spectrum allocation approach is presented to avoid mutual interference among automotive radars. Although decentralized spectrum allocation has been extensively studied in cognitive radio sensor networks, two challenges are observed for automotive sensors using radar. First, the allocation approach should be dynamic as all radars are mounted on moving vehicles. Second, each radar does not communicate with the others so it has quite limited information. A machine learning technique, reinforcement learning, is utilized because it can learn a decision making policy in an unknown dynamic environment. As a single radar observation is incomplete, a long short-term memory recurrent network is used to aggregate radar observations through time so that each radar can learn to choose a frequency subband by combining both the present and past observations. Simulation experiments are conducted to compare the proposed approach with other common spectrum allocation methods such as the random and myopic policy, indicating that our approach outperforms the others.
Future wireless communication systems are expected to explore spectral bands typically used by radar systems, in order to overcome spectrum congestion of traditional communication bands. Since in many applications radar and communication share the sa me platform, spectrum sharing can be facilitated by joint design as dual function radar-communications system. In this paper, we propose a joint transmit beamforming model for a dual-function multiple-input-multiple-output (MIMO) radar and multiuser MIMO communication transmitter sharing the spectrum and an antenna array. The proposed dual-function system transmits the weighted sum of independent radar waveform and communication symbols, forming multiple beams towards the radar targets and the communication receivers, respectively. The design of the weighting coefficients is formulated as an optimization problem whose objective is the performance of the MIMO radar transmit beamforming, while guaranteeing that the signal-to-interference-plus-noise ratio (SINR) at each communication user is higher than a given threshold. Despite the non-convexity of the proposed optimization problem, it can be relaxed into a convex one, which can be solved in polynomial time, and we prove that the relaxation is tight. Then, we propose a reduced complexity design based on zero-forcing the inter-user interference and radar interference. Unlike previous works, which focused on the transmission of communication symbols to synthesize a radar transmit beam pattern, our method provides more degrees of freedom for MIMO radar and is thus able to obtain improved radar performance, as demonstrated in our simulation study. Furthermore, the proposed dual-function scheme approaches the radar performance of the radar-only scheme, i.e., without spectrum sharing, under reasonable communication quality constraints.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا