ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum light-matter interfaces (QLMIs) connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching, and studies of fundamental physics. Rare-earth-ion (REI) doped cry stals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium REIs to photonic nano-cavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent 4I9/2-4F3/2 optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled REIs is performed via photon echoes. Long optical coherence times (T2~100 microseconds) and small inhomogeneous broadening are measured for the cavity-coupled REIs, thus demonstrating their potential for on-chip scalable QLMIs.
Quantum entanglement is a fundamental resource for secure information processing and communications, where hyperentanglement or high-dimensional entanglement has been separately proposed towards high data capacity and error resilience. The continuous -variable nature of the energy-time entanglement makes it an ideal candidate for efficient high-dimensional coding with minimal limitations. Here we demonstrate the first simultaneous high-dimensional hyperentanglement using a biphoton frequency comb to harness the full potential in both energy and time domain. The long-postulated Hong-Ou-Mandel quantum revival is exhibited, with up to 19 time-bins, 96.5% visibilities. We further witness the high-dimensional energy-time entanglement through Franson revivals, which is observed periodically at integer time-bins, with 97.8% visibility. This qudit state is observed to simultaneously violate the generalized Bell inequality by up to 10.95 deviations while observing recurrent Clauser-Horne-Shimony-Holt S-parameters up to 2.76. Our biphoton frequency comb provides a platform in photon-efficient quantum communications towards the ultimate channel capacity through energy-time-polarization high-dimensional encoding.
Dispersion and its cancellation in entanglement-based nonlocal quantum measurements are of fundamental and practical interests. We report the first demonstration of cancellation of femtosecond-level dispersion by inverting the sign of the differentia l dispersion between the long and short paths in only one arm of a fiber-based Franson interferometer. We restore the otherwise limited quantum visibility to an unprecedented 99.6%, and put time-energy entanglement at the same level of quality as polarization entanglement for use in quantum information processing applications.
We demonstrate generation of high-purity photon pairs at 1560 nm in a single spatial mode from a periodically-poled KTiOPO_4 (PPKTP) waveguide. With nearly lossless spectral filtering, the PPKTP waveguide source shows approximately 80 % single-mode f iber coupling efficiency and is well suited for high-dimensional time-energy entanglement-based quantum key distribution. Using high-count-rate self-differencing InGaAs single-photon avalanche photodiodes configured with either square or sinusoidal gating, we achieve > 1 Mbit/s raw key generation with 3 bits-per-photon encoding, and, to the best of our knowledge, the highest reported Franson quantum-interference visibility of 98.2 % without subtraction of accidental coincidences.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا