ترغب بنشر مسار تعليمي؟ اضغط هنا

We address the issue of performing testing inference in generalized linear models when the sample size is small. This class of models provides a straightforward way of modeling normal and non-normal data and has been widely used in several practical situations. The likelihood ratio, Wald and score statistics, and the recently proposed gradient statistic provide the basis for testing inference on the parameters in these models. We focus on the small-sample case, where the reference chi-squared distribution gives a poor approximation to the true null distribution of these test statistics. We derive a general Bartlett-type correction factor in matrix notation for the gradient test which reduces the size distortion of the test, and numerically compare the proposed test with the usual likelihood ratio, Wald, score and gradient tests, and with the Bartlett-corrected likelihood ratio and score tests. Our simulation results suggest that the corrected test we propose can be an interesting alternative to the other tests since it leads to very accurate inference even for very small samples. We also present an empirical application for illustrative purposes.
We obtain an asymptotic expansion for the null distribution function of thegradient statistic for testing composite null hypotheses in the presence of nuisance parameters. The expansion is derived using a Bayesian route based on the shrinkage argumen t described in Ghosh and Mukerjee (1991). Using this expansion, we propose a Bartlett-type corrected gradient statistic with chi-square distribution up to an error of order o(n^{-1}) under the null hypothesis. Further, we also use the expansion to modify the percentage points of the large sample reference chi-square distribution. A small Monte Carlo experiment and various examples are presented and discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا