ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular circadian clocks, that are found in all nucleated cells of mammals, are known to dictate rhythms of approximately 24 hours (circa diem) to many physiological processes. This includes metabolism (e.g., temperature, hormonal blood levels) and cell proliferation. It has been observed in tumor-bearing laboratory rodents that a severe disruption of these physiological rhythms results in accelerated tumor growth. The question of accurately representing the control exerted by circadian clocks on healthy and tumour tissue proliferation to explain this phenomenon has given rise to mathematical developments, which we review. The main goal of these previous works was to examine the influence of a periodic control on the cell division cycle in physiologically structured cell populations, comparing the effects of periodic control with no control, and of different periodic controls between them. We state here a general convexity result that may give a theoretical justification to the concept of cancer chronotherapeutics. Our result also leads us to hypothesize that the above mentioned effect of disruption of circadian rhythms on tumor growth enhancement is indirect, that, is this enhancement is likely to result from the weakening of healthy tissue that are at work fighting tumor growth.
69 - Marie Doumic 2009
This paper investigates the connection between discrete and continuous models describing prion proliferation. The scaling parameters are interpreted on biological grounds and we establish rigorous convergence statements. We also discuss, based on the asymptotic analysis, relevant boundary conditions that can be used to complete the continuous model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا