ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient feature selection from high-dimensional datasets is a very important challenge in many data-driven fields of science and engineering. We introduce a statistical mechanics inspired strategy that addresses the problem of sparse feature select ion in the context of binary classification by leveraging a computational scheme known as expectation propagation (EP). The algorithm is used in order to train a continuous-weights perceptron learning a classification rule from a set of (possibly partly mislabeled) examples provided by a teacher perceptron with diluted continuous weights. We test the method in the Bayes optimal setting under a variety of conditions and compare it to other state-of-the-art algorithms based on message passing and on expectation maximization approximate inference schemes. Overall, our simulations show that EP is a robust and competitive algorithm in terms of variable selection properties, estimation accuracy and computational complexity, especially when the student perceptron is trained from correlated patterns that prevent other iterative methods from converging. Furthermore, our numerical tests demonstrate that the algorithm is capable of learning online the unknown values of prior parameters, such as the dilution level of the weights of the teacher perceptron and the fraction of mislabeled examples, quite accurately. This is achieved by means of a simple maximum likelihood strategy that consists in minimizing the free energy associated with the EP algorithm.
We study a minimal model for the growth of a phenotypically heterogeneous population of cells subject to a fluctuating environment in which they can replicate (by exploiting available resources) and modify their phenotype within a given landscape (th ereby exploring novel configurations). The model displays an exploration-exploitation trade-off whose specifics depend on the statistics of the environment. Most notably, the phenotypic distribution corresponding to maximum population fitness (i.e. growth rate) requires a non-zero exploration rate when the magnitude of environmental fluctuations changes randomly over time, while a purely exploitative strategy turns out to be optimal in two-state environments, independently of the statistics of switching times. We obtain analytical insight into the limiting cases of very fast and very slow exploration rates by directly linking population growth to the features of the environment.
A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. We theoretically investigate this forced wetting transition for axisymmetric menisci on fibers of varying radii. First, we use a matched asymptotic expansion and derive the maximum speed of dewetting. For all radii we find the maximum speed occurs at vanishing apparent contact angle. To further investigate the transition we numerically determine the bifurcation diagram for steady menisci. It is found that the meniscus profiles on thick fibers are smooth, even when there is a film deposited between the bath and the contact line, while profiles on thin fibers exhibit strong oscillations. We discuss how this could lead to different experimental scenarios of film deposition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا