ﻻ يوجد ملخص باللغة العربية
We study a minimal model for the growth of a phenotypically heterogeneous population of cells subject to a fluctuating environment in which they can replicate (by exploiting available resources) and modify their phenotype within a given landscape (thereby exploring novel configurations). The model displays an exploration-exploitation trade-off whose specifics depend on the statistics of the environment. Most notably, the phenotypic distribution corresponding to maximum population fitness (i.e. growth rate) requires a non-zero exploration rate when the magnitude of environmental fluctuations changes randomly over time, while a purely exploitative strategy turns out to be optimal in two-state environments, independently of the statistics of switching times. We obtain analytical insight into the limiting cases of very fast and very slow exploration rates by directly linking population growth to the features of the environment.
Microbial metabolic networks perform the basic function of harvesting energy from nutrients to generate the work and free energy required for survival, growth and replication. The robust physiological outcomes they generate across vastly different or
Darwinian evolution can be modeled in general terms as a flow in the space of fitness (i.e. reproductive rate) distributions. In the diffusion approximation, Tsimring et al. have showed that this flow admits fitness wave solutions: Gaussian-shape fit
In exponentially proliferating populations of microbes, the population typically doubles at a rate less than the average doubling time of a single-cell due to variability at the single-cell level. It is known that the distribution of generation times
We use dynamical generating functionals to study the stability and size of communities evolving in Lotka-Volterra systems with random interaction coefficients. The size of the eco-system is not set from the beginning. Instead, we start from a set of
Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables an