ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadrons have finite interaction size with dense material, a basic feature common to known forms of hadronic calorimeters (HCAL). We argue that substructure variables cannot use HCAL information to access the microscopic nature of jets much narrower t han the hadronic shower size, which we call superboosted massive jets. It implies that roughly 15% of their transverse energy profile remains inaccessible due to the presence of long-lived neutral hadrons. This part of the jet substructure is also subject to order-one fluctuations. We demonstrate that the effects of the fluctuations are not reduced when a global correction to jet variables is applied. The above leads to fundamental limitations in the ability to extract intrinsic information from jets in the superboosted regime. The neutral fraction of a jet is correlated with its flavor. This leads to an interesting and possibly useful difference between superboosted W/Z/h/t jets and their corresponding backgrounds. The QCD jets that form the background to the signal superboosted jets might also be qualitatively different in their substructure as their mass might lie at or below the Sudakov mass peak. Finally, we introduce a set of zero-cone longitudinal jet substructure variables and show that while they carry information that might be useful in certain situations, they are not in general sensitive to the jet substructure.
We study the implications of a large degree of compositeness for the light generation quarks in composite pseudo-Nambu-Goldstone-boson Higgs models. We focus in particular on viable scenarios where the right-handed up-type quarks have a sizable mixin g with the strong dynamics. For concreteness we assume the latter to be characterized by an SO(5)/SO(4) symmetry with fermionic resonances in the SO(4) singlet and fourplet representations. Singlet partners dominantly decay to a Higgs boson and jets. As no dedicated searches are currently looking for these final states, singlet partners can still be rather light. Conversely, some fourplet partners dominantly decay to an electroweak gauge boson and a jet, a signature which has been analyzed at the LHC. To constrain the parameter space of this scenario we have reinterpreted various LHC analyses. In the limit of first two generation degeneracy, as in minimal flavor violation or U(2)-symmetric flavor models, fourplet partners need to be relatively heavy, with masses above 1.8 TeV, or the level of compositeness needs to be rather small. The situation is rather different in models that deviate from the first two generation degeneracy paradigm, as the charm parton distribution functions are suppressed relative to the up quark ones. The right-handed charm quark can be composite and its partners being as light as 600 GeV, while the right-handed up quark needs either to be mostly elementary or to have its partners as heavy as 2 TeV. Models with fully composite singlet fermions are also analyzed, leading to similar conclusions. Finally, we consider the case where both the fourplet and the singlet states are present. In this case the bounds could be significantly weaken due to a combination of smaller production rates and the opening of new channels including cascade processes.
Discovery of a Higgs boson and precise measurements of its properties open a new window to test physics beyond the standard model. Models with Universal Extra Dimensions are not exception. Kaluza-Klein excitations of the standard model particles cont ribute to the production and decay of the Higgs boson. In particular, the parameters associated with third generation quarks are constrained by Higgs data, which are relatively insensitive to other searches often involving light quarks and leptons. We investigate implications of the 126 GeV Higgs in Next-to-Minimal Universal Extra Dimensions, and show that boundary terms and bulk masses allow a lower compactification scale as compared to in Minimal Universal Extra Dimensions.
We present a general model with universal extra dimensions in the presence of the bulk fermion masses and boundary localized kinetic terms, which are generically allowed by symmetries of five dimensional gauge theory. We provide a comprehensive analy sis for a general UED model, including Kaluza-Klein mass spectra, their interactions with the SM particles, and constraints from LHC, electroweak tests, and dark matter experiments. Finally we show current bounds on the size of allowed universal bulk mass and universal brane-localized terms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا