ترغب بنشر مسار تعليمي؟ اضغط هنا

62 - Thierry Morel 2014
A full exploitation of the observations provided by the CoRoT and Kepler missions depends on our ability to complement these data with accurate effective temperatures and chemical abundances. We review in this contribution the major efforts that have been undertaken to characterise late-type, seismic targets based on spectra gathered as part of the ground-based, follow-up campaigns. A specific feature of the spectroscopic studies of these stars is that the gravity can be advantageously fixed to the more accurate value derived from the pulsation spectrum. We describe the impact that such an approach has on the estimation of Teff and [Fe/H]. The relevance of red-giant seismic targets for studies of internal mixing processes and stellar populations in our Galaxy is also briefly discussed.
43 - Thierry Morel 2012
We review our knowledge of the mixing properties of magnetic OB stars and discuss whether the observational data presently available support, as predicted by some theoretical models, the idea that magnetic phenomena favour the transport of the chemic al elements. A (likely statistical) relationship between enhanced mixing and the existence of a field has been emerging over the last few years. As discussed in this contribution, however, a clear answer to this question is presently hampered by the lack of large and well-defined samples of magnetic and non-magnetic stars.
The detection of radial and non-radial solar-like oscillations in thousands of G-K giants with CoRoT and Kepler is paving the road for detailed studies of stellar populations in the Galaxy. The available average seismic constraints allow a precise an d largely model-independent determination of stellar radii (hence distances) and masses. We here briefly report on the distance determination of thousands of giants in the CoRoT and Kepler fields of view.
The frequency of maximum oscillation power measured in dwarfs and giants exhibiting solar-like pulsations provides a precise, and potentially accurate, inference of the stellar surface gravity. An extensive comparison for about 40 well-studied pulsat ing stars with gravities derived using classical methods (ionisation balance, pressure-sensitive spectral features or location with respect to evolutionary tracks) supports the validity of this technique and reveals an overall remarkable agreement with mean differences not exceeding 0.05 dex (although with a dispersion of up to ~0.2 dex). It is argued that interpolation in theoretical isochrones may be the most precise way of estimating the gravity by traditional means in nearby dwarfs. Attention is drawn to the usefulness of seismic targets as benchmarks in the context of large-scale surveys.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا