ترغب بنشر مسار تعليمي؟ اضغط هنا

We search for evidence of dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) measured with 50 months of Fermi Large Area Telescope (LAT) observations. An improved theoretical description of the cosmological DM annihilation sig nal, based on two complementary techniques and assuming generic weakly interacting massive particle (WIMP) properties, renders more precise predictions compared to previous work. More specifically, we estimate the cosmologically-induced gamma-ray intensity to have an uncertainty of a factor ~20 in canonical setups. We consistently include both the Galactic and extragalactic signals under the same theoretical framework, and study the impact of the former on the IGRB spectrum derivation. We find no evidence for a DM signal and we set limits on the DM-induced isotropic gamma-ray signal. Our limits are competitive for DM particle masses up to tens of TeV and, indeed, are the strongest limits derived from Fermi LAT data at TeV energies. This is possible thanks to the new Fermi LAT IGRB measurement, which now extends up to an energy of 820 GeV. We quantify uncertainties in detail and show the potential this type of search offers for testing the WIMP paradigm with a complementary and truly cosmological probe of DM particle signals.
The {gamma}-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic d iffuse {gamma}-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of $2.32pm0.02$ and a break energy of $(279pm52)$ GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is $(7.2pm0.6) times 10^{-6}$ cm$^{-2}$ s$^{-1}$ sr$^{-1}$ above 100 MeV, with an additional $+15$%/$-30$% systematic uncertainty due to the Galactic diffuse foregrounds.
The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considere d to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma-ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma-ray flux upper limits between 500 MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the the annihilation of dark matter particles with masses between 2 GeV and 10 TeV into prototypical Standard Model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse gamma-ray background modeling, and assumed dark matter density profile.
Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is sti ll lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays. This offers a compelling way to detect the acceleration sites of protons. The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering. We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope. This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs.
We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope in the Milky Way Halo region searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e+e- produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early Universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as annihilation of dark matter.
Numerical simulations based on the Lambda-CDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the gamma-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard gamma-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on gamma-ray spectra consistent with WIMP annihilation through the $b bar b$ channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 GeV WIMP annihilating through the $b bar b$ channel.
We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting the Earths shadow, which is offset in opposite dir ections for opposite charges due to the Earths magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 GeV and 200 GeV. We confirm that the fraction rises with energy in the 20-100 GeV range. The three new spectral points between 100 and 200 GeV are consistent with a fraction that is continuing to rise with energy.
Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satell ite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 1e-26 cm^3 s^-1 at 5 GeV to about 5e-23 cm^3 s^-1 at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (~3e-26 cm^3 s^-1 for a purely s-wave cross section), without assuming additional boost factors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا