ترغب بنشر مسار تعليمي؟ اضغط هنا

84 - Tayyaba Zafar 2014
In this work, we study argon abundances in the interstellar medium of high-redshift galaxies (2<z(abs)<4.2) detected as Damped Lya absorbers (DLA) in the spectra of background quasars. We use high-resolution quasar spectra obtained from the ESO-UVES advanced data products (EUADP) database. We present 3 new measurements and 5 upper limits of ArI. We further compiled DLAs/sub-DLA data from the literature with measurements available of argon and alpha-capture elements (S or Si), making up a total of 37 systems, i.e. the largest DLA argon sample investigated so far. We confirm that argon is generally deficient in DLAs, with a mean value [Ar/alpha]= -0.4+/-0.06dex (standard error of the mean). The [Ar/alpha] ratios show a weak, positive trend with increasing NHI and increasing absorption redshift, and a weak, negative trend with dust-free metallicity, [S/H]. Detailed analysis of the abundance ratios indicates that ArI ionisation, rather than dust depletion or nucleosynthetic evolution, is responsible for the argon deficiency. Altogether, the observational evidence is consistent with a scenario of argon ionisation dominated by quasar metagalactic radiation modulated by local HI self-shielding inside the DLA host galaxies. Our measurements and limits of argon abundances suggest that the cosmic reionisation of HeII is completed above z=3, but more measurements at z(abs)>3.5 are required to probe the final stages of this process of cosmic reionisation.
87 - Tayyaba Zafar 2014
We report here a study of nitrogen and $alpha$-capture element (O, S, and Si) abundances in 18 Damped Ly$alpha$ Absorbers (DLAs) and sub-DLAs drawn from the ESO-UVES Advanced Data Products (EUADP) database. We report 9 new measurements, 5 upper and 4 lower limits of nitrogen that when compiled with available nitrogen measurements from the literature makes a sample of 108 systems. The extended sample presented here confirms the [N/$alpha$] bimodal behaviour suggested in previous studies. Three-quarter of the systems show $langle$[N/$alpha$]$rangle=-0.85$ ($pm$0.20 dex) and one-quarter ratios are clustered at $langle$[N/$alpha$]$rangle= -1.41$ ($pm$0.14 dex). The high [N/$alpha$] plateau is consistent with the HII regions of dwarf irregular and blue compact dwarf galaxies although extended to lower metallicities and could be interpreted as the result of a primary nitrogen production by intermediate mass stars. The low [N/$alpha$] values are the lowest ever observed in any astrophysical site. In spite of this fact, even lower values could be measured with the present instrumentation, but we do not find them below [N/$alpha$] $approx$ $-1.7$. This suggests the presence of a floor in [N/$alpha$] abundances, which along with the lockstep increase of N and Si may indicate a primary nitrogen production from fast rotating, massive stars in relatively young or unevolved systems.
140 - Tayyaba Zafar 2014
Nitrogen is thought to have both primary and secondary origins depending on whether the seed carbon and oxygen are produced by the star itself (primary) or already present in the interstellar medium (secondary) from which star forms. DLA and sub-DLA systems with typical metallicities of -3.0<Z/Z_sun<-0.5 are excellent tools to study nitrogen production. We made a search for nitrogen in the ESO-UVES advanced data products (EUADP) database. In the EUADP database, we find 10 new measurements and 9 upper limits of nitrogen. We further compiled DLA/sub-DLA data from the literature with estimates available of nitrogen and alpha-elements. This yields a total of 98 systems, i.e. the largest nitrogen abundance sample investigated so far. In agreement with previous studies, we indeed find a bimodal [N/alpha] behaviour: three-quarter systems show a mean value of [N/alpha]=-0.87 with a scatter of 0.21 dex and one-quarter shows ratios clustered at [N/alpha]=-1.43 with a lower dispersion of 0.13 dex. The high [N/alpha] group is consistent with the blue compact dwarves and dwarf irregular galaxies, suggesting primary nitrogen production. The low [N/alpha] group is the lowest ever observed in any astrophysical site and probably provides an evidence of the primary production by fast rotating massive stars in young sites. Moreover, we find a transition between the two [N/alpha] groups around [N/H]=-2.5. The transition is not abrupt and there are a few systems lying in the transition region. Additional observations of DLAs/sub-DLAs below [N/H]<-2.5 would provide more clues.
70 - Tayyaba Zafar 2013
Quasar foreground damped absorbers, associated with HI-rich galaxies allow to estimate the neutral gas mass over cosmic time, which is a possible indicator of gas consumption as star formation proceeds. The DLAs and sub-DLAs are believed to contain a large fraction of neutral gas mass in the Universe. In Paper I of the series, we present the results of a search for DLAs and sub-DLAs in the ESO-UVES Advanced Data Products dataset of 250 quasars. Here we use an unbiased sub-sample of sub-DLAs from this dataset. We build a subset of 122 quasars ranging from 1.5 <z_em < 5.0, suitable for statistical analysis. The statistical sample is analyzed in conjunction with other sub-DLA samples from the literature. This makes up a combined sample of 89 sub-DLAs over a redshift path of $Delta z=193$. Redshift evolution of the number density and the line density are derived for sub-DLAs and compared with the LLSs and DLAs measurements from the literature. The results indicate that these three classes of absorbers are evolving in the redshift interval 1 < z < 5. The column density distribution, f(N,z), down to the sub-DLA limit is determined. The flattening of f_(N,z) in the sub-DLA regime is present in the observations. The redshift evolution of f_(N,z) down to sub-DLA regime is also presented, indicating the presence of more sub-DLAs at high-redshift as compared to low-redshift. f_(N,z) is further used to determine the neutral gas mass density, Omega_g, at 1.5 < z < 5.0. The complete sample shows that sub-DLAs contribute 8-20% to the total Omega_g from 1.5 < z < 5.0. In agreement with previous studies, no evolution of Omega_g is seen from low-redshift to high-redshift, suggesting that star formation solely cannot explain this non-evolution and replenishment of gas and/or recombination of ionized gas is needed. (Abridged)
36 - Tayyaba Zafar 2013
Among the key parameters defining the ISM of galaxies is the fraction of the metals that are locked up in dust: the metals-to-dust ratio. This ratio bears not only on the ISM and its evolution, but particularly on the origin of cosmic dust. We combin e extinction and abundance data from GRB afterglows, from QSO absorbers, as well as from galaxy-lensed QSOs, to determine the metals-to-dust ratios for lines-of-sight through a wide diversity of galaxies from blue, dwarf starbursts to massive ellipticals, across a vast range in redshift z=0.1-6.3, and nearly three orders of magnitude in column density and metal abundance. We thus determine the metals-to-dust ratio in a unique way, providing direct determinations of in situ gas and dust columns without recourse to assumptions with large uncertainties. We find that the metals-to-dust ratios in these systems are surprisingly close to the value for the local group (10^{21.3} cm-2 A_V mag-1), with a mean value of 10^{21.2} cm-2 A_V mag-1 and a standard deviation of 0.3 dex. There is no evidence of deviation from this mean ratio as a function of metallicity, even down to our lowest metallicity of 0.01 Z/Z_sun. The lack of any obvious dependence of the metals-to-dust ratio on either column density, galaxy type or age, redshift, or metallicity indicates a close correspondence between the formation of the metals and the formation of dust. Any delay between the formation of metals and dust must be shorter than the typical metal-enrichment times of these galaxies. Formation of the bulk of the dust in low mass stars is therefore ruled out by these data at any cosmic epoch. Furthermore, dust destruction must not dominate over formation/growth in virtually any galaxy environment. The correlation between metals and dust is a natural consequence of the formation of the bulk of dust in SNe [Abridged].
62 - Tayyaba Zafar 2012
The unequivocal, spectroscopic detection of the 2175 bump in extinction curves outside the Local Group is rare. To date, the properties of the bump have been examined in only two GRB afterglows (GRB 070802 and GRB 080607). In this work we analyse in detail the detections of the 2175 extinction bump in the optical spectra of the two further GRB afterglows: GRB 080605 and 080805. We gather all available optical/NIR photometric, spectroscopic and X-ray data to construct multi-epoch SEDs for both GRB afterglows. We fit the SEDs with the Fitzpatrick & Massa (1990) model with a single or broken PL. We also fit a sample of 38 GRB afterglows, known to prefer a SMC-type extinction curve, with the same model. We find that the SEDs of GRB 080605 and GRB 080805 at two epochs are fit well with a single PL with a derived extinction of A_V = 0.52(+0.13 -0.16) and 0.50 (+0.13 -0.10), and 2.1(+0.7-0.6) and 1.5+/-0.2 respectively. While the slope of the extinction curve of GRB 080805 is not well-constrained, the extinction curve of GRB 080605 has an unusual very steep far-UV rise together with the 2175 bump. Such an extinction curve has previously been found in only a small handful of sightlines in the MW. One possible explanation of such an extinction curve may be dust arising from two different regions with two separate grain populations, however we cannot distinguish the origin of the curve. We finally compare the four 2175 bump sightlines to the larger GRB afterglow sample and to Local Group sightlines. We find that while the width and central positions of the bumps are consistent with what is observed in the Local Group, the relative strength of the detected bump (A_bump) for GRB afterglows is weaker for a given A_V than for almost any Local Group sightline. Such dilution of the bump strength may offer tentative support to a dual dust-population scenario.
37 - Tayyaba Zafar 2011
Q0151+048 is a physical QSO pair at z ~ 1.929 with a separation of 3.3 arcsec on the sky. In the spectrum of Q0151+048A (qA), a DLA is observed at a higher redshift. We have previously detected the host galaxies of both QSOs, as well as a Lya blob. W e performed low-resolution spectroscopy with the slit aligned with the extended emission. We also observed the system using the medium-resolution VLT/X-shooter spectrograph and the slit aligned with the two QSOs. We measure systemic redshifts of zem(A)=1.92924{pm}0.00036 and zem(B)=1.92863{pm}0.00042 from the H{beta} and H{alpha} emission lines, respectively. We estimate the masses of the black holes of the two QSOs to be 10^9.33 M{odot} and 10^8.38 M{odot} for qA and qB, respectively. From this we infered the mass of the dark matter halos hosting the two QSOs: 10^13.74 M{odot} and 10^13.13 M{odot} for qA and qB, respectively. We observe a velocity gradient along the major axis of the Lya blob consistent with the rotation curve of a large disk galaxy, but it may also be caused by gas inflow or outflow. We detect residual continuum in the DLA trough which we interpret as emission from the host galaxy of qA. The derived H0 column density of the DLA is log NH0 = 20.34 {pm} 0.02. Metal column densities results in an overall metallicity of 0.01 Z{odot}. We detect CII* which allows us to make a physical model of the DLA cloud. From the systemic redshifts of the QSOs, we conclude that the Lya blob is associated with qA rather than with the DLA. The DLA must be located in front of both the Lya blob and qA at a distance larger than 30 kpc. The two QSOs accrete at normal eddington ratios. The DM halo of this double quasar will grow to the mass of our local super-cluster at z=0. We point out that those objects therefore form an ideal laboratory to study the physical interactions in a z=2 pre-cursor of our local super-cluster.
96 - Tayyaba Zafar 2011
GRB afterglows are well suited to extinction studies due to their brightness, simple power-law spectra and the occurrence of GRBs in distant star forming galaxies. In this paper we present results from the SED analysis of a sample of 41 GRB afterglow s, from X-ray to NIR wavelengths. This is the largest sample of extinction curves outside the Local Group and, to date, the only extragalactic sample of absolute extinction curves based on spectroscopy. Visual extinction correlation with HI column density as well as total and gas-phase metal column density are examined. Approximately half the sample require a cooling break between the optical and X-ray regimes. The broken power-law SEDs show an average change in the spectral index of delta_beta=0.51 with a standard deviation of 0.02. This is consistent with the expectation from a simple synchrotron model. Of the sample, 63% are well described by the SMC-type extinction curve and have moderate or low extinction, with AV<0.65. Almost a quarter of our sample is consistent with no significant extinction (typically AV<0.1). The 2175AA extinction bump is detected unequivocally in 7% of our sample (3 GRBs), which all have A_V>1.0. We find an anti-correlation between gas-to-dust ratio and metallicity consistent with the Local Group relation. Our metals-to-dust ratios derived from the soft X-ray absorption are always larger (3-30 times) than the Local Group value, which may mean that GRB hosts may be less efficient at turning their metals into dust. However, we find that gas, dust, and metal column densities are all likely to be influenced by photo-ionization and dust destruction effects from the GRB. [abridged]
88 - Tayyaba Zafar 2010
Context: GRB afterglows are excellent probes of gas and dust in star-forming galaxies at all epochs. It has been posited that dust in the early Universe must be different from dust at lower z. To date two reports directly support this contention, one of which is based on the spectral shape of GRB 050904 at z = 6.295. Aims: We reinvestigate the afterglow to understand dust at high z. We address the claimed evidence for unusual (SN-origin) dust in its host galaxy by simultaneously examining the X-ray and optical/NIR spectrophotometric data. Methods: We derive the intrinsic SED of the afterglow at 0.47, 1.25 and 3.4 days, by re-reducing the Swift X-ray data, the 1.25 days FORS2 z-Gunn photometric data, the spectroscopic and z-band photometric data at ~3 days from the Subaru telescope, as well as the critical UKIRT Z-band photometry at 0.47 days, upon which the claim of dust detection largely relies. Results: We find no evidence of dust extinction in the SED. We compute flux densities at lambda_rest = 1250 AA directly from the observed counts at all epochs. In the earliest epoch, 0.47 days, the Z-band suppression is found to be smaller (0.3 +- 0.2 mag) than previously reported and statistically insignificant (<1.5 sigma). Furthermore we find that the photometry of this band is unstable and difficult to calibrate. Conclusions: From the afterglow SED we demonstrate that there is no evidence for dust extinction -- the SED at all times can be reproduced without dust, and at 1.25 days in particular, significant extinction can be excluded, with A(3000 AA) < 0.27 mag at 95% confidence using the SN-type extinction curve. We conclude that there is no evidence of any extinction in the afterglow of GRB 050904 and that the presence of SN-origin dust in the host of GRB 050904 must be viewed skeptically. [abridged]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا