ترغب بنشر مسار تعليمي؟ اضغط هنا

161 - Juan Wang , Rui Kang , Tao Xing 2021
A compact HTS cable that is able to carry large current density is crucial for developing high field accelerator magnets. We are reporting a novel HTS cable (named X-cable) that could achieve a high current density as the Roebel cable, but is impleme nted by in-plane bending stacked HTS tapes directly to realize the transposition. The cable is jointly developed with an industrial company on a production line: ready for large scale production from the beginning. Recently, a prototype cable with REBCO coated conductor has been successfully fabricated. Test results show no significant degradation, demonstrated the feasibility of such cable concept. In this paper, the cables design concept, in-plane bending performance of the REBCO tapes, fabrication procedure and test results of this first prototype cable will be presented.
422 - Gangtao Xin , Pingyi Fan 2020
Soft compression is a lossless image compression method, which is committed to eliminating coding redundancy and spatial redundancy at the same time by adopting locations and shapes of codebook to encode an image from the perspective of information t heory and statistical distribution. In this paper, we propose a new concept, compressible indicator function with regard to image, which gives a threshold about the average number of bits required to represent a location and can be used for revealing the performance of soft compression. We investigate and analyze soft compression for binary image, gray image and multi-component image by using specific algorithms and compressible indicator value. It is expected that the bandwidth and storage space needed when transmitting and storing the same kind of images can be greatly reduced by applying soft compression.
137 - Tao Xin 2020
Quantum device characterization via state tomography plays an important role in both validating quantum hardware and processing quantum information, but it needs the exponential number of the measurements. For the systems with XX+YY-type couplings an d Z readouts, such as superconducting quantum computing (SQC) systems, traditional quantum state tomography (QST) using single-qubit readout operations at least requires $3^n$ measurement settings in reconstructing an $n$-qubit state. In this work, I proposed an improved QST by adding 2-qubit evolutions as the readout operations and obtained an optimal tomographic scheme using the integer programming optimization. I respectively apply the new scheme on SQC systems with the Nearest-Neighbor, 2-Dimensional, and All-to-All connectivities on qubits. It shows that this method can reduce the number of measurements by over 60% compared with the traditional QST. Besides, comparison with the traditional scheme in the experimental feasibility and robustness against errors were made by numerical simulation. It is found that, the new scheme has good implementability and it can achieve comparable or even better accuracy than the traditional scheme. It is expected that the experimentalist from the related fields can directly utilize the ready-made results for reconstructing quantum states involved in their research.
Quite a few algorithms have been proposed to optimize the transmission performance of Multipath TCP (MPTCP). However, existing MPTCP protocols are still far from satisfactory in lossy and ever-changing networks because of their loss-based congestion control and the difficulty of managing multiple subflows. Recently, a congestion-based congestion control, BBR, is proposed to promote TCP transmission performance through better use of bandwidth. Due to the superior performance of BBR, we try to boost MPTCP with it. For this propose, coupled congestion control should be redesigned for MPTCP, and a functional scheduler able to effectively make use of the characteristics of BBR must also be developed for better performance. In this paper, we first propose Coupled BBR as a coupled congestion control algorithm for MPTCP to achieve high throughput and stable sending rate in lossy network scenarios with guaranteed fairness with TCP BBR flows and balanced congestion. Then, to further improve the performance, we propose an Adaptively Redundant and Packet-by-Packet (AR&P) scheduler, which includes two scheduling methods to improve adaptability in highly dynamic network scenarios and keep in-order packet delivery in asymmetric networks. Based on Linux kernel implementation and experiments in both testbed and real network scenarios, we show that the proposed scheme not only provides higher throughput, but also improves robustness and reduces out-of-order packets in some harsh circumstances.
63 - Tao Xin , Yishan Li , Yu-ang Fan 2020
The detection of topological phases of matter becomes a central issue in recent years. Conventionally, the realization of a specific topological phase in condensed matter physics relies on probing the underlying surface band dispersion or quantum tra nsport signature of a real material, which may be imperfect or even absent. On the other hand, quantum simulation offers an alternative approach to directly measure the topological invariant on a universal quantum computer. However, experimentally demonstrating high-dimensional topological phases remains a challenge due to the technical limitations of current experimental platforms. Here, we investigate the three-dimensional topological insulators in the AIII (chiral unitary) symmetry class which yet lack experimental realization. Using the nuclear magnetic resonance system, we experimentally demonstrate their topological properties, where a dynamical quenching approach is adopted and the dynamical bulk-boundary correspondence in the momentum space is observed. As a result, the topological invariants are measured with high precision on the band-inversion surface, exhibiting robustness to the decoherence effect. Our work paves the way towards the quantum simulation of topological phases of matter in higher dimensions and more complex systems through controllable quantum phases transitions.
High-temperature electrolysis (HTE) is a promising technology for achieving high-efficiency power-to-gas, which mitigates the renewable curtailment by transforming wind or solar energy into fuels. Different from low-temperature electrolysis, a consid erable amount of the input energy is consumed by auxiliaries in an HTE system for maintaining the temperature, so the studies on systematic description and parameter optimization of HTE are essentially required. A few published studies investigated HTEs systematic optimization based on simulation, yet there is not a commonly used analytical optimization model which is more suitable for integration with power grid. To fill in this blank, a concise analytical operation model is proposed in this paper to coordinate the necessary power consumptions of auxiliaries under various loading conditions of an HTE system. First, this paper develops a comprehensive energy flow model for an HTE system based on the fundamentals extracted from the existing work, providing a quantitative description of the impacts of condition parameters, including the temperature and the feedstock flow rates. A concise operation model is then analytically proposed to search for the optimal operating states that maximize the hydrogen yield while meeting the desired system loading power by coordinating the temperature, the feedstock flows and the electrolysis current. The evaluation of system performance and the consideration of constraints caused by energy balances and necessary stack requirements are both included. In addition, analytical optimality conditions are obtained to locate the optimal states without performing nonlinear programming by further investigating the optimization method. A numerical case of an HTE system is employed to validate the proposed operation model, which proves to not only improve the conversion efficiency but also enlarge the system load range.
Power-to-gas (P2G) can be employed to balance renewable generation because of its feasibility to operate at fluctuating loading power. The fluctuating operation of low-temperature P2G loads can be achieved by controlling the electrolysis current alon e. However, this method does not apply to high-temperature P2G (HT-P2G) technology with auxiliary parameters such as temperature and feed rates: Such parameters need simultaneous coordination with current due to their great impact on conversion efficiency. To improve the system performance of HT-P2G while tracking the dynamic power input, this paper proposes a maximum production point tracking (MPPT) strategy and coordinates the current, temperature and feed rates together. In addition, a comprehensive dynamic model of an HT-P2G plant is established to test the performance of the proposed MPPT strategy, which is absent in previous studies that focused on steady states. The case study suggests that the MPPT operation responds to the external load command rapidly even though the internal transition and stabilization cost a few minutes. Moreover, the conversion efficiency and available loading capacity are both improved, which is definitely beneficial in the long run.
51 - Jun Li , Zhihuang Luo , Tao Xin 2018
Quantum pseudorandomness, also known as unitary designs, comprise a powerful resource for quantum computation and quantum engineering. While it is known in theory that pseudorandom unitary operators can be constructed efficiently, realizing these obj ects in realistic physical systems can be a challenging task. In this work, we study quantum pseudorandomness generation on a 12-spin nuclear magnetic resonance system. The experimental process is based on the recently proposed design Hamiltonian approach, which has the merit of being significantly more efficient than previous protocols. By applying random refocusing sequences to the experimental system we create a design Hamiltonian the dynamics of which quickly forms unitary designs. We then use multiple-quantum techniques to measure spreading of quantum coherences over systems degrees of freedom, and so to probe the growth of quantum pseudorandomness. The measured multiple-quantum coherence spectra indicate that substantial quantum pseudorandomness have been achieved.
We present and experimentally realize a quantum algorithm for efficiently solving the following problem: given an $Ntimes N$ matrix $mathcal{M}$, an $N$-dimensional vector $textbf{emph{b}}$, and an initial vector $textbf{emph{x}}(0)$, obtain a target vector $textbf{emph{x}}(t)$ as a function of time $t$ according to the constraint $dtextbf{emph{x}}(t)/dt=mathcal{M}textbf{emph{x}}(t)+textbf{emph{b}}$. We show that our algorithm exhibits an exponential speedup over its classical counterpart in certain circumstances. In addition, we demonstrate our quantum algorithm for a $4times4$ linear differential equation using a 4-qubit nuclear magnetic resonance quantum information processor. Our algorithm provides a key technique for solving many important problems which rely on the solutions to linear differential equations.
116 - Tao Xin , Shilin Huang , Sirui Lu 2017
As of today, no one can tell when a universal quantum computer with thousands of logical quantum bits (qubits) will be built. At present, most quantum computer prototypes involve less than ten individually controllable qubits, and only exist in labor atories for the sake of either the great costs of devices or professional maintenance requirements. Moreover, scientists believe that quantum computers will never replace our daily, every-minute use of classical computers, but would rather serve as a substantial addition to the classical ones when tackling some particular problems. Due to the above two reasons, cloud-based quantum computing is anticipated to be the most useful and reachable form for public users to experience with the power of quantum. As initial attempts, IBM Q has launched influential cloud services on a superconducting quantum processor in 2016, but no other platforms has followed up yet. Here, we report our new cloud quantum computing service -- NMRCloudQ (http://nmrcloudq.com/zh-hans/), where nuclear magnetic resonance, one of the pioneer platforms with mature techniques in experimental quantum computing, plays as the role of implementing computing tasks. Our service provides a comprehensive software environment preconfigured with a list of quantum information processing packages, and aims to be freely accessible to either amateurs that look forward to keeping pace with this quantum era or professionals that are interested in carrying out real quantum computing experiments in person. In our current version, four qubits are already usable with in average 1.26% single-qubit gate error rate and 1.77% two-qubit controlled-NOT gate error rate via randomized benchmaking tests. Improved control precisions as well as a new seven-qubit processor are also in preparation and will be available later.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا