ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimization of Hydrogen Yield of a High-Temperature Electrolysis System with Coordinated Temperature and Feed Factors at Various Loading Conditions: A Model-Based Study

125   0   0.0 ( 0 )
 نشر من قبل Xuetao Xing
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

High-temperature electrolysis (HTE) is a promising technology for achieving high-efficiency power-to-gas, which mitigates the renewable curtailment by transforming wind or solar energy into fuels. Different from low-temperature electrolysis, a considerable amount of the input energy is consumed by auxiliaries in an HTE system for maintaining the temperature, so the studies on systematic description and parameter optimization of HTE are essentially required. A few published studies investigated HTEs systematic optimization based on simulation, yet there is not a commonly used analytical optimization model which is more suitable for integration with power grid. To fill in this blank, a concise analytical operation model is proposed in this paper to coordinate the necessary power consumptions of auxiliaries under various loading conditions of an HTE system. First, this paper develops a comprehensive energy flow model for an HTE system based on the fundamentals extracted from the existing work, providing a quantitative description of the impacts of condition parameters, including the temperature and the feedstock flow rates. A concise operation model is then analytically proposed to search for the optimal operating states that maximize the hydrogen yield while meeting the desired system loading power by coordinating the temperature, the feedstock flows and the electrolysis current. The evaluation of system performance and the consideration of constraints caused by energy balances and necessary stack requirements are both included. In addition, analytical optimality conditions are obtained to locate the optimal states without performing nonlinear programming by further investigating the optimization method. A numerical case of an HTE system is employed to validate the proposed operation model, which proves to not only improve the conversion efficiency but also enlarge the system load range.



قيم البحث

اقرأ أيضاً

Power-to-gas (P2G) can be employed to balance renewable generation because of its feasibility to operate at fluctuating loading power. The fluctuating operation of low-temperature P2G loads can be achieved by controlling the electrolysis current alon e. However, this method does not apply to high-temperature P2G (HT-P2G) technology with auxiliary parameters such as temperature and feed rates: Such parameters need simultaneous coordination with current due to their great impact on conversion efficiency. To improve the system performance of HT-P2G while tracking the dynamic power input, this paper proposes a maximum production point tracking (MPPT) strategy and coordinates the current, temperature and feed rates together. In addition, a comprehensive dynamic model of an HT-P2G plant is established to test the performance of the proposed MPPT strategy, which is absent in previous studies that focused on steady states. The case study suggests that the MPPT operation responds to the external load command rapidly even though the internal transition and stabilization cost a few minutes. Moreover, the conversion efficiency and available loading capacity are both improved, which is definitely beneficial in the long run.
Hydrogen-rich compounds are extensively explored as candidates for a high-temperature superconductors. Currently, the measured critical temperature of $203$ K in hydrogen sulfide (H$_3$S) is among the highest over all-known superconductors. In presen t paper, using the strong-coupling Eliashberg theory of superconductivity, we compared in detail the thermodynamic properties of two samples containing different hydrogen isotopes H$_3$S and D$_3$S at $150$ GPa. Our research indicates that it is possible to reproduce the measured values of critical temperature $203$ K and $147$ K for H$_3$S and D$_3$S by using a Coulomb pseudopotential of $0.123$ and $0.131$, respectively. However, we also discuss a scenario in which the isotope effect is independent of pressure and the Coulomb pseudopotential for D$_3$S is smaller than for H$_3$S. For both scenarios, the energy gap, specific heat, thermodynamic critical field and related dimensionless ratios are calculated and compared with other conventional superconductors. We shown that the existence of the strong-coupling and retardation effects in the systems analysed result in significant differences between values obtained within the framework of the Eliashberg formalism and the prediction of the Bardeen-Cooper-Schrieffer theory.
Methods of optical dynamic nuclear polarization (DNP) open the door to the replenishable hyperpolarization of nuclear spins, boosting their NMR/MRI signature by orders of magnitude. Nanodiamond powder rich in negatively charged Nitrogen Vacancy (NV) defect centers has recently emerged as one such promising platform, wherein 13C nuclei can be hyperpolarized through the optically pumped defects completely at room temperature and at low magnetic fields. Given the compelling possibility of relaying this 13C polarization to nuclei in external liquids, there is an urgent need for the engineered production of highly hyperpolarizable diamond particles. In this paper, we report on a systematic study of various material dimensions affecting optical 13C hyperpolarization in diamond particles -- especially electron irradiation and annealing conditions that drive NV center formation. We discover surprisingly that diamond annealing at elevated temperatures close to 1720C have remarkable effects on the hyperpolarization levels, enhancing them by upto 36-fold over materials annealed through conventional means. We unravel the intriguing material origins of these gains, and demonstrate they arise from a simultaneous improvement in NV electron relaxation time and coherence time, as well as the reduction of paramagnetic content, and an increase in 13C relaxation lifetimes. Overall this points to significant recovery of the diamond lattice from radiation damage as a result of the high-temperature annealing. Our work suggests methods for the guided materials production of fluorescent, 13C hyperpolarized, nanodiamonds and pathways for their use as multi-modal (optical and MRI) imaging and hyperpolarization agents.
Hydrogen peroxide (H2O2) formation rates in a proton exchange membrane (PEM) fuel cell anode and cathode were estimated as a function of humidity and temperature by studying the oxygen reduction reaction (ORR) on a rotating ring disc electrode (RRDE) . Fuel cell conditions were replicated by depositing a film of Pt/Vulcan XC-72 catalyst onto the disk and by varying the temperature, dissolved O2 concentration and the acidity levels in hydrochloric acid (HClO4). The HClO4 acidity was correlated to ionomer water activity and hence fuel cell humidity. The H2O2 formation rates showed a linear dependence on oxygen concentration and square dependence on water activity. The H2O2 selectivity in ORR was independent of oxygen concentration but increased with decrease in water activity (i.e., decreased humidity). Potential dependent activation energy for the H2O2 formation reaction was estimated from data obtained at different temperatures.
Many efforts have been dedicated to improve the solar steam generation by using a bi-layer structure. In this paper, a two-dimensional mathematical model describing the water evaporation in a bi-layer structure is firstly established and then the fin ite element method is used to simulate the effects of different influence factors on the evaporation rate. Results turn out that: besides the high solar energy absorptivity of the first-layer, an optimum porosity of the second-layer porous material should be applied and the optimum porosity is about 0.45 in this work. This optimum porosity is determined by the balance between the positive effect of the lowering effective thermal conductivity of the second layer and the negative effect of the reduced vapor diffusivity in the second layer when the porosity is decreased. The influence of the thermal conductivity of the second-layer porous material is negligible because the effective thermal conductivity of the second layer is determined by the porosity while a larger porosity means more water in the second layer. The ambient air velocity could greatly enhance the evaporation rate, and the evaporation rate will decrease linearly with the increase of the air relative humidity. This study is expected to supply some information for developing a more effective bi-layer solar steam generation system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا